DATA-DRIVEN PRODUCT FAMILY DESIGN FOR ADDITIVE MANUFACTURING

LEI, NINGrong

School of Mechanical and Aerospace Engineering

A thesis submitted to the Nanyang Technological University in partial fulfillment of the requirement for the degree of

Doctor of Philosophy

2016
Acknowledgement

I would like to extend my appreciation to all of those who helped and contributed, in one form or another, through my Doctor of Philosophy (PhD) research. My deep love and gratitude go to my family who provide me their unconditional love, full support and encouragement throughout all my life. The love, support, inspiration from my husband, Oliver, helped me through the challenges of PhD study and make me a better person.

I would like to express my gratitude to my supervisor, Dr. Seung Ki Moon for his support, advice, insights, and encouragement throughout of my PhD research. He provided me many opportunities to advance my research and improve professional skills through research collaboration, projects, and international conferences. I also would like to thank Dr. Chun-Hsien Chen and Dr. Songlin Chen for their comments and suggestions during our discussions on product development. Special thanks to Dr. Guijun Bi who I collaborated on a joint research project between Singapore Institute of Manufacturing Technology (SIMTech) and Nanyang Technological University (NTU).

Thanks to my colleagues, Samyeon, Xiling, Hyunwoong, Passarporn, and Yun En in the Design Sciences Laboratory at NTU Singapore. I cherish the discussions and time we spent together.

I would like to thank Dr. David, W. Rosen from George W. Woodruff School of Mechanical Engineering at Georgia Institute of Technology for inviting me as a visiting scholar there. This opportunity provided great opportunity for me to bring the depth and width to my research. During my brief stay, I am indebted to Jane and Chad for
their helpful discussions and for letting me use, modify and improve on their designs of finger pump family.

Finally, I would like to thank the School of Mechanical and Aerospace Engineer at NTU for providing the scholarship to support my research.
Contents

1 Introduction .. 1

1.1 Research background 2

1.2 Research motivation .. 6

1.3 Research objectives and scope 8

1.4 Overview of the thesis 8

2 Literature review .. 11

2.1 Product family and product platform design tools and methods 12

2.2 Market segmentation and product positioning with data mining and machine learning techniques .. 18

2.3 Multi-objective decision support problems 22

2.4 Additive manufacturing facilitates customization 28

2.5 Summary and preview ... 33

3 A data-driven product family design method for additive manufacturing 35

3.1 Overview and rationale 35

3.2 The method: data-driven product family design for additive manufacturing 37

3.2.1 Step 1: data-driven market segmentation and product positioning 39

3.2.2 Step 2: redefine customization for additive manufacturing 42
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.1</td>
<td>Overview of influences of additive manufacturing to product family design</td>
<td>96</td>
</tr>
<tr>
<td>6.2</td>
<td>An additive manufacturing process model for product family design</td>
<td>98</td>
</tr>
<tr>
<td>6.2.1</td>
<td>Product family design</td>
<td>98</td>
</tr>
<tr>
<td>6.2.2</td>
<td>Topology optimization</td>
<td>100</td>
</tr>
<tr>
<td>6.2.3</td>
<td>Finite element analysis and cost analysis</td>
<td>101</td>
</tr>
<tr>
<td>6.2.4</td>
<td>Customized product family</td>
<td>103</td>
</tr>
<tr>
<td>6.3</td>
<td>Designing a family of cantilever beams</td>
<td>103</td>
</tr>
<tr>
<td>6.3.1</td>
<td>Product family optimization</td>
<td>104</td>
</tr>
<tr>
<td>6.3.2</td>
<td>Finite element analysis and performance surfaces</td>
<td>106</td>
</tr>
<tr>
<td>6.3.3</td>
<td>Cost analysis</td>
<td>108</td>
</tr>
<tr>
<td>6.3.4</td>
<td>Customization of the cantilever beam product family</td>
<td>110</td>
</tr>
<tr>
<td>6.3.5</td>
<td>Beam fabrication and mechanical verification</td>
<td>111</td>
</tr>
<tr>
<td>6.4</td>
<td>Summary and preview</td>
<td>113</td>
</tr>
<tr>
<td>7.1</td>
<td>Overview of the dialysis pump design problem</td>
<td>116</td>
</tr>
<tr>
<td>7.2</td>
<td>The finger pump family design</td>
<td>118</td>
</tr>
<tr>
<td>7.2.1</td>
<td>The finger pump model description</td>
<td>118</td>
</tr>
<tr>
<td>7.2.2</td>
<td>Step 1: define market segmentation</td>
<td>121</td>
</tr>
<tr>
<td>7.2.3</td>
<td>Step 2: optimize individual products for additive manufacturing</td>
<td>122</td>
</tr>
<tr>
<td>7.2.4</td>
<td>Step 3: formulation of the utility-based product family design problem</td>
<td>127</td>
</tr>
<tr>
<td>7.2.5</td>
<td>Step 4: Solve the optimization problem to define the product family</td>
<td>130</td>
</tr>
<tr>
<td>7.3</td>
<td>Comparison to product platform constructal theory method results</td>
<td>131</td>
</tr>
</tbody>
</table>
Summary

Platform based product family design is a promising approach to meet diverse Customer Needs (CNs) and achieve organizational objectives. We have dedicated this work to improve product family design by incorporating advanced information and new manufacturing technologies. Our effort resulted in a data-driven product family design for Additive Manufacturing (AM) method. The proposed data-driven approach used Data Mining (DM) to extract meaningful information from market data. The extracted information was interpreted by advanced machine learning algorithms to form a Decision Support System (DSS), that helps designers make informed decisions for market segmentation and product positioning. Based on the identified market segments, an AM process model for product family design was developed to offer affordable customization for each targeted market segment. Finally, a Utility-Based Compromise Decision Support Problem (u-cDSP) was formulated to serve as a mathematical framework for modeling a multi-objective product family design problem. The thesis highlights data-driven decision making and the opportunities for AM based product family design to operate in a much broader design space that is free from constraints which arise in traditional product family designs from finding a compromise between commonality and product performances.

The data-driven product family design for AM method was tested and verified through three distinct case studies. The first case study focused on the design of a DSS for market segmentation and product positioning based on US automotive market data. The
proposed [DSS] automates market segmentation and product positioning and provides a framework for the construction of a robust [DSS]. In the second case study, we used the proposed method to design a product family of cantilever beams. We found that our process model reflects the ability of [AM] to produce arbitrarily complex structures with virtually no tooling effort, and it makes these powerful properties available to practitioners working in the field of product family design. The final case study centered on the design of a dialysis finger pump family. The proposed method translates the benefits of [AM] into improved customization and cost reduction without compromising individual product performances.

We created new knowledge in the product family design area by describing the theoretical and empirical validation process of the data-driven product family design for [AM] method. The main result of this research is a systematic framework which seamlessly integrates [AM] technologies into product family design to facilitate improved customization. The primary contribution of the framework is a data-driven [DSS] that advances market segmentation and product positioning. It is expected that the proposed method will redefine how we think about customization in product family design.
Chapter 1

Introduction

First, the taking in of scattered particulars under one Idea, so that everyone understands what is being talked about ... Second, the separation of the Idea into parts, by dividing it at the joints, as nature directs, not breaking any limb in half as a bad carver might.

Plato, Phaedrus, 265 BC

This thesis proposes a data-driven product family design for Additive Manufacturing (AM) method that helps companies meet increasing customization requirements. This chapter presents carefully selected material on platform based product family design and thereby it provides the background of our research work. Section 1.2 postulates three research questions which sparked the research on data-driven product family design for AM. Section 1.3 presents the research objectives, scope and contributions for the work. Finally, Section 1.4 introduces the thesis overview.
1.1 Research background

We are living in the age of the “buyer’s market” where the producer of goods must satisfy individual customer requirements [1]. One way to meet the individual requirements is the mass customization strategy. This strategy creates competitive market places, which require manufacturers to introduce an increasing number of products with a shorter life span at a lower cost [2]. Therefore, producers are continuously thriving to find new ways for reducing the production cost, while still offering attractive products [3].

The product family paradigm has been proposed to address the challenges of designing products for mass customization in order to meet diverse Customer Needs (CNs). The term product family is frequently defined in the literature as a set of similar products that are derived from a common platform and yet possess specific features/functionality to meet particular customer requirements [4, 5, 6]. A member of a product family is called product variant [4]. Each product variant possesses characteristics in response to unique CNs. The product family paradigm introduces product proliferation while taking advantage of mass production efficiency [7]. Many companies invest in product family development practices in order to provide sufficient variety to the market while maintaining the economies of scale and scope within their manufacturing capabilities [8]. The underlying focus of product family optimization is to design a group of related products, which are built around a common functional system architecture known as platform [4, 9]. Product platforms are commonly characterized by two types: modular platforms and scalable platforms [10]. A modular platform is used to create variants through the configuration of existing modules [4, 11]. While a scalable platform facilitates the differentiation of variants, that possess the same function, with varying capacities [10].

Well-known examples of platform based product families include: Black and Decker© power tools, HP© printers, IBM©, and Microsoft© Operation Systems [4]. Many in-
dustries have acknowledged the competitive advantages of product family and platform approaches [12]. Product families are successful in the market place, because they exploit commonality between the family of products and thereby they offer a competitive advantage for companies. However, too much commonality (i.e. not enough diversity) within a product family can lead to a lack of product distinctiveness and a compromise in product performance. Consequently, there is an inherent trade-off between commonality and diversity within any product family [13, 14]. Conventional product family optimization focuses on exploiting the commonality between individual products [15]. The fundamental assumption is that common components are less cost intensive than distinctive ones. Hence, harvesting the benefits of product family design means to identify features and functions that can be shared amongst products. However, product family design compromises on which CNs are satisfied. The compromise implies that some CNs are not satisfied. As a consequence companies struggle to realize the full potential of a market. To rectify the shortcoming means to improve mass customization in order to serve customers better and to achieve commercial success.

The main objective of the platform based product family design is to provide cost effective product variety [9]. The objective is achieved by increasing the commonality across multiple products and differentiating each product in the family by satisfying individually targeted CNs. Before we can effectively meet diverse CNs, we have to understand market segmentation, because the market segmentation strategy structures the customer demands. To be specific, market segmentation divides the market into customer clusters with similar needs or characteristics [16].

Meyer and Lehnerd developed a market segmentation grid, as shown in Figure 1.1. It conceptualizes product platforms across different market segments [4]. In the market segmentation grid, major market segments, that are serviced by a company’s products, are listed horizontally. The vertical axis reflects different price and performance tiers within each market segment. The market segmentation grid provides a useful attention
Figure 1.1: Product platform market segmentation grid (adapted from [4]).

directing tool to help us map and identify product platform leveraging opportunities within a product family. In order to satisfy the dynamically changing CNs, companies acquire and store an ever increasing amount of data, such as customer transaction data and engineering configuration information. The acquired data is non-homogeneous and high dimensional [17]. As the amount of data increases, so does the complexity of identifying natural patterns within the dataset. The natural patterns hold the key for effective market segmentation, because they reflect the CNs. However, many companies lack both sufficient customer related data and expertise to extract useful information from the data in order to make informed decisions and act on them [18]. The ability to understand CNs and determine suitable products for a particular group of customers becomes a challenge, since enterprise decision makers and engineers struggle to extract meaningful patterns from the data which aid the product family development process.

Another challenge within the domain of product family design is to satisfy diverse CNs while maintaining distinctiveness and maximizing commonality among product variants [19]. Exploiting commonality might result in cost savings, but having too much com-
monality in the product family may make some low-end products over-designed and some high-end products under-designed. As a result, there is a danger of losing market share in high-end market niches or wasting capital investment in low-end niches [20]. Furthermore, in a large product family, more compromises/trade-offs are required, which cause a degradation of individual product performances. When the product variants show too many similar features and fail to be distinct from each other, a company might lose the unique brand identity. As a consequence, the reduced brand identity might trigger a loss of market share to the competition. Therefore, offering affordable customization is the foremost challenge that enterprises face when they follow the product family design paradigm. The power of a company to offer improved mass customization depends on a good understanding of CNs and on the manufacturing capabilities. To translate CNs data into tangible design decisions requires advanced information technology. Similarly, the realization of the improved mass customization demands new and advanced manufacturing technologies.

Innovations in manufacturing technology are likely to bring numerous competitive advantages, such as low costs, superior quality, shorter delivery cycles, low inventories, shorter and new product development cycles [21]. AM is such a technological innovation which holds the promise to generate competitive advantages. The new technology can be defined as “the process of joining materials to make objects from 3D model data, usually layer upon layer, as opposed to subtractive manufacturing methodologies, such as traditional machining” [22]. The competitive advantages arise from the fact that AM technologies, unlike material removal processes, facilitate free-form fabrication of geometrically complex parts without special fixtures and expensive tooling. Due to these positive properties, AM has the potential to shorten the lead time significantly and produce customized parts cost-effectively. However, a prerequisite to realize the competitive advantages is a design methodology which unlocks the potential of AM.

We have dedicated this work to incorporate advanced information and new man-
ufacturing technology into product family design. This effort resulted in a data-driven product family design for AM method. The proposed data-driven approach used Data Mining (DM) to extract meaningful information from market data. The extracted information was interpreted by advanced machine learning algorithms to form a Decision Support System (DSS), that helps designers make informed decisions for market segmentation and product positioning. Based on the identified market segments, an AM process model for product family design was developed to offer affordable customization for each targeted market segment. Finally, a Utility-Based Compromise Decision Support Problem (u-cDSP) was formulated to serve as a mathematical framework for modeling the multi-objective product family design problem.

The proposed method is expressed in the research questions and hypotheses in the next section.

1.2 Research motivation

The motivation of our research comes from the new challenges for product family design in the global competitive “buyer’s market”. The increasing demand for product customization and the increasing capability to realize customization in a cost effective way force companies to rethink their product family design strategies. The use of new information and manufacturing technologies is not an option, it is a must for companies’ survival and profitability. As a consequence, there is a need for new design methodologies that incorporate advanced information and manufacturing technologies into product family design.

After having established a powerful need for updated design methodologies, which incorporate new technologies, as a key driver of the research work, we have to refine this need into three major research questions.
Research question 1: How to enable more agile and more accurate decision-making for market segmentation and product positioning?

Research question 2: How to incorporate AM into product family design processes in order to facilitate customization in targeted market segments?

Research question 3: How to mathematically model and support product platform decisions that involve multiple objectives?

The main hypothesis is that the data-driven product family design for AM method has the ability to answer these research questions. The proposed method was developed for the design of scalable product families. A scalable product family adjusts the platform by changing values of dimensions or other parameters such that the resulting components address specific CNs. For example, through scaling of a common set of design variables, the product family can satisfy a wide variety of customer requirements without or with minimum compromise in individual product quality and performances.

To address each research question in greater detail, the following one-to-one corresponding sub-hypotheses are stated:

Sub-hypothesis 1: A DSS that employs advanced DM and machine learning techniques can be developed to help designers identify market segmentation and predict product positioning.

Sub-hypothesis 2: An AM process model for product family design can be developed to incorporate AM into product family design process in order to facilitate improved customization in target market segments.

Sub-hypothesis 3: A utility-based compromise Decision Support Problem (DSP) can be formulated to model multiple objectives product family design problem.

The sub-hypotheses are outlined here to provide context for the literature review in the next chapter. Furthermore, they structure and guide the development of the proposed method. The next section presents research objectives and research scope.
1.3 Research objectives and scope

The principal goal of the research work, presented in this thesis, is to develop a data-driven product family design for AM method. The proposed method incorporates advanced DM and machine learning techniques, as well as AM into product family design. We aim to provide a new product family design method that offer improved customization in a cost effective way. Keeping the primary research as a focus, the following detailed objectives are investigated:

- Develop a robust DSS to automate and objectify market segmentation and product positioning processes.
- Redefine the product family design process to accommodate AM for improved customization.
- Analyze the manufacturing cost for Selective Laser Sintering (SLS) based product family designs.
- Formulate and solve a u-cDSP for multi-objective product family optimization problems.

Two main aspects of our method are: (1) objective decision making by using DM and machine learning techniques for market segmentation and product positioning based on market data; (2) Incorporating AM technologies into product family design to provide improved customization.

1.4 Overview of the thesis

An overview of the thesis chapters is shown in Figure 1.2. As seen in the most left column, there are four parts of the thesis structure, including problem identification, method, testing, and closure. The flow chart column shows the relationship and logical
flow of different chapters. The relevance column briefly introduces the main contents of each chapter and its role in the thesis.

Having introduced the research background, motivation and objectives in this chapter, the next chapter reviews the related state-of-the-art research, elucidating the research gaps and opportunities in product family design. Four research areas are reviewed: (1) product family design methods and tools (2) DM and machine learning techniques and their roles in product family design, (3) multi-objective decision support problems, and (4) AM technologies and their influence on mass customization.

The proposed data-driven product family design for AM method is illustrated in Chapter 3. Chapter 4 introduces and verifies the data-driven DSS for market segmentation and product positioning. Chapter 5 augments the previous developed DSS and develops a framework on how to construct a robust DSS for market segmentation and product positioning. Chapter 6 demonstrates implementation of AM process model for product family design. Chapter 7 fully implements the proposed data-driven product family design for AM method on designing a family of finger pumps. In each chapter, a specific problem is identified, the steps of the proposed method are performed, and the ramifications of the results are discussed.

Chapter 8 is the final chapter and it contains a summary of the thesis. Section 8.2 restates the research hypotheses and emphasizes research contributions. Limitations of the research work and possible directions of future work are discussed in Sections 8.3 and 8.4 respectively. Final remarks are drawn in Section 8.5.
<table>
<thead>
<tr>
<th>Flow chart</th>
<th>Relevance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Problem identification</td>
<td></td>
</tr>
</tbody>
</table>
| Chapter 1 Introduction | • Introduction, motivation and technical foundation
 • Identify research objectives and scope, hypothesis and contributions |
| Chapter 2 Literature review | • Introduce product family design, decision support systems for market segmentation, and additive manufacturing for improved customization
 • Research gap identification |
| **Method** | |
| Chapter 3 A data-driven product family design method for additive manufacturing | • Elaborate the proposed method and steps
 • Outline the verification strategy |
| **Testing** | |
| Chapter 4 Data-driven market segmentation and product position | • Develop a decision support system for market segmentation and product positioning
 • Demonstrate implementation of the decision support system based on automobile market data |
| Chapter 5 Data-driven decision support system design and evaluation | • Compare different data mining and decision support techniques
 • Construct a robust decision support system
 • Demonstrate implementation of the decision support system based on automobile market data |
| Chapter 6 Product family design for additive manufacturing | • Integrate additive manufacturing into product family design process
 • Demonstrate the implementation of the proposed process model for a cantilever beam family design |
| Chapter 7 Data-driven product family design for additive manufacturing: design of a family of finger pump | • Demonstrate the full implementation of the proposed data-driven product family design for additive manufacturing method
 • Design of a family of finger pump
 • Provide verification of the proposed method |
| **Closure** | |
| Chapter 8 Closure: achievements and recommendations | • Summarize research contributions and limitations
 • Recommend future work directions |

Figure 1.2: Overview of the thesis chapters.
Chapter 2

Literature review

In competitive markets, companies have to meet Customer Needs (CNs) in order to be commercially successful. The problems on how to meet the CNs are not new. There is a whole ecosystem, complete with research niches, of literature that aims to provide elegant solutions that address CNs in a most economic way. In this chapter, we embark on the difficult task of selecting and indeed justifying a manageable subset of the problems, the solutions of which help companies provide improved and affordable customization. The selection process starts by reviewing the argument that led to the postulation of product family design methodologies. Based on the literature review, we share the insight that product family design is greatly influenced by information and manufacturing technologies. As a direct consequence of the realization, we investigated new enabling technologies for product customization. Having intensely studied the mechanics of product family design and their intricate relationship with technologies, we came to the conclusion that there is a need for integrating advanced data-driven information technology and Additive Manufacturing (AM) into product family design. As such, that is important work, because of the socio-economic interest in improving mass customization.

Section 2.1 reviews and discusses the platform based product family design as one
method to optimize the product creation process. Increasing customer requirements and changing socio-economic climate drive the complexity of product family design. To manage the increasing complexity, more and more designers employ Data Mining (DM) and machine learning tools. Section 2.2 gives an overview of market segmentation and product positioning methods with DM and machine learning techniques. Section 2.3 reviews multi-objective product family design decision problems. Both the design itself and design strategies are not static, they have to adapt to changing CNs and new technologies. Section 2.4 states how design methodologies need to change in order to facilitate new technologies, such as AM. Each of these product family design approaches is critically reviewed. Strengths, weaknesses and accepted application domains are discussed. Taken together, the literature review provides the necessary constructs for the development of the data-driven product family design for AM method as outlined in Chapter 3.

2.1 Product family and product platform design tools and methods

Platform based product family development has received much attention in both academia and industries alike over last decades [19]. The reason for the wide spread interest comes from the fact that this design strategy is seen as an economic way to achieve mass customization. Conceptually, platform based product development unfolds as a logical and organized method for generating a family of products [23]. The product platform provides a generic umbrella to capture and utilize commonality, within which each new product is instantiated and extended in order to anchor future designs to a common product line structure.

The common product line structure is achieved by either modularization or scaling the design parameters. Hence, platform based product families can be categorized into modular product families and scalable product families [24].

- Modular product families: product family members are instantiated by adding,
substituting, and/or removing one or more functional modules from the product platform \cite{25, 26}. Modular platforms allow designers to create functionally different product variants.

- Scalable product families: scaling variables are used to “stretch” or “shrink” the product platform in one or more dimensions to obtain different product variants \cite{10}. Scalable platforms allow a designer to create functionally identical products with different capacities.

Modularization achieves cost savings by (a) harvesting the economies of scale for modules that can be used across product families, (b) complexity reduction throughout manufacturing and assembly processes, and (c) inventory reduction through risk pooling and postponement \cite{27}. Kreng and Lee synthesized modular design goals in the literature into 14 module drivers: carryover, technology evolution, planned product changes, standardization of common modules, product variety, customization, flexibility of use, product development, product development management, styling, purchasing modularity components, manufacturability refinement and quality assurance, quick service and maintenance, product upgrading, recycling, reuse, and disposal \cite{28}. These module drivers were linked to different company functions, such as product development and design, production, after sales, etc. Various approaches have been developed to establish mathematical models for modularity and commonality. For example, Fujita and Yoshida developed an algorithm that simultaneously optimizes both module attributes and modular combinations \cite{29}. In their model, modules are either independent, similar, or common. Huang and Kusiak used a modular matrix to identify the number of modules and the number of differentiation components, both values were selected such that they satisfy varieties \cite{30}. Ye et al. used a matrix-based design tool which supports clustering product attributes into common, variable, and unique modules \cite{31}. A detailed review on metrics for modularity was done by Gershenson et al. \cite{32}. As the amount of relevant
data and the product family design complexity increase, the design community faces
the challenge of finding meaningful information to support design processes. Therefore,
the community turns to advanced information technologies in order to find solutions
for the eminent data overload. Some of the most promising techniques are information
extraction and decision support algorithms. Hence, these methods have been used to
extract meaningful information from modular design data. There are several methods
for grouping or distinguishing modules. For example, association rules and fuzzy clustering
[33], mathematical programming [34], Genetic Algorithm (GA) [35], Particle Swarm
Optimization (PSO) [36]. This concludes our brief review of modular product family
design, the reader can refer to Jose and Tollenaere [37] and Joines and Culberth [38] for
a general view of modular methodologies.

Scalable product family design involves two basic tasks [19]. The first task is platform
selection – to determine which design parameters take common values. The second task is
design variable identification – to determine the optimal values of common and distinctive
variables by satisfying performance and economic requirements. Several methods have been
developed to design scalable platforms. Dai and Scott proposed the sensitivity analysis
and cluster analysis based design method to improve both efficiency and effectiveness
of a scalable product family design [20]. Nayak et al. proposed a variation-based plat-
form design methodology that aims to satisfy a range of performance requirements using
the smallest variation of product variants designs [39]. Simpson et al. introduced a pro-
duct platform concept exploration method called Product Platform Concept Exploration
Method (PPCEM) [19]. The cornerstone of their method is a concept which minimizes
the sensitivity of performance variations in scaling factors. The PPCEM begins with
a market segmentation grid which is used to identify potential product family develop-
ment strategies. Subsequently, the product family design variables and performance
parameters are identified. Next, product platform specifications are aggregated. The ag-
ggregation step includes formulating an appropriate multi-objective model of the product

platform, in the form of a Compromise Decision Support Problem (cDSP). Finally, a product platform, that best satisfies the overall design requirements, is obtained. Based on a principle similar to PPCEM, the product variety trade-off evaluation method was presented by Simpson, et al [13]. The method is used to assess appropriate product family trade-offs using commonality and performance indices. In each of these approaches, the set of scale factors and the common platform parameters are pre-selected. The method we propose is based on similar assumptions.

Meyer and Lehnerd developed a three-level method for the design of a scalable platform-based product family [4]. Figure 2.1 gives a graphical representation of the design method. The method is structured into common building blocks, product platforms, and market segmentation:

1. The common building blocks include consumer insights, product technologies, manufacturing process, and organizational capabilities which are the basis for developing a product platform.

2. Product platforms constitute the basis for configuring product variants. The variants, together with platforms, form a product family.

3. The market segmentation process identifies a market segmentation grid. Each market segment represents different CNs. Each product variant addresses unique customer requirements with its functionalities.

In the process of platform based product family planning and development, the market segmentation grid, as shown in the market segmentation level of Figure 2.1 can be used by companies to segment their markets and help in defining a clear product platform strategy. The major market segments, serviced by a company’s products, are listed horizontally in the grid. The vertical axis reflects different tiers of price and performance within each market segment. According to Meyer and Lehnerd, there are three different platform leveraging strategies within the market segmentation grid: horizontal
Figure 2.1: Three levels of study developing a product family.
leveraging, vertical leveraging, and the so-called *beachhead approach*, which combines the first two methods [4]. All three leveraging strategies enable a more efficient and effective product family development. With all that research in the background, Simpson et al. concluded that horizontal leveraging strategies always take advantage of modular platforms, in contrast scale-based platform design can be used for vertical leveraging strategies [13]. The methods and tools that haven been developed to identify market segmentation is elaborated in the next section.

To help in designing and assessing a product platform, the degree of commonality between product variants, within a product family, is often used. Many commonality indices have been developed based on different parameters, such as number of common components and their connections, costs, etc. These indices include: Degree of Commonality Index (DCI), Commonality Index (CI), Generational Variety Index (GVI), Commonality versus Diversity Index (CDI) [40, 41]. Common knowledge in the product family design community is that products, which share more parts and modules within a product family, achieve greater inventory reductions, exhibit less variability, improve standardization, and shorten development and lead time, because more parts are reused and fewer new parts have to be designed [42]. Simpson et al. developed a product variety trade-off evaluation method to help designers resolve the choice between platform commonality and individual product performance within a product family [13]. The goal was achieved through the use of two indices: the Non-Commonality Index (NCI) and the Performance Deviation Index (PDI). Simpson et al. gave a comprehensive list and review of existing commonality indices [19]. Thevenot et al. provided an extensive comparison between many of these commonality indices [43].

Common to all the research discussed above is the realization that a successful product platform must balance performance and commonality of individual products in the family. The fundamental assumption is that common components are less cost intensive than distinctive ones. Hence, harvesting the benefits of product family design means to
identify features and functions that can be shared among products. However, product family design compromises on which CNs are satisfied. Performance and commonality are two conflicting objectives, a shared platform for all products in the family means to establish an agreement which resolves the conflict. The way in which the agreement is reached depends also on the product variety induced manufacturing complexity, because manufacturing complexity is a significant cost factor and sometimes there are hard technical limitations [44]. Therefore, offering product variety without compromising individual performance and realizing product variants in a cost effective manner are challenging tasks that have to be addressed.

2.2 Market segmentation and product positioning with data mining and machine learning techniques

Since the early 1960s, market segmentation is widely considered to be a key marketing concept and a significant amount of marketing research literature focused on this topic [16]. The literature is concerned with the fact that a firm must continuously reposition and redesign its existing products or introduce new products to specific market segments in order to maintain and enhance the level of profitability in an increasingly competitive and transparent market place [45]. Decisions on market segmentation and product positioning are crucial for companies to meet diverse CNs and achieve its goals. A company has to establish its market and subsequently subdivide the market so that it can address the needs, posed by a particular market segment, with specific products. Despite the acknowledged importance of market segmentation for business practice, most of the relevant literature is conceptual or normative in nature, dealing with how market segmentation should be conducted [16, 47], rather than with how market segmentation is actually performed in practice.

With the advent of cheap data storage and fast computers, the amount of engineering
data generated during design and development accumulates beyond the ability of human beings to refine the data into knowledge or information. Yet, in the current volatile markets, accessing and distilling valuable knowledge, hidden in the vast amount of data, is crucial [48]. Over the last few decades, DM and machine learning techniques for intelligent analysis of large data volumes have been incorporated in the product design process in order to improve and optimize engineering design and manufacturing process decisions [49]. To keep their competitiveness, commercial organizations continuously monitor their target market segments by gathering data from both consumers and competitors [50].

The resulting data is analyzed to form the basis for market segmentation and product positioning. The analysis quality defines the validity of both processes. As a consequence, there is an urgent need to find and apply efficient methods for extracting information from the data.

In the context of product development, DM and machine learning are emerging areas of research that have the potential to significantly impact on engineering design and manufacturing efforts [51, 52, 53]. Westphal and Blaxton identified four functions of DM: classification, estimation, segmentation and description [54]. Classification involves assigning labels to previously unseen data records based on the knowledge extracted from historical data. Estimation is the task of filing in missing values in the fields of an incoming record as a function of fields in other records. Segmentation (also called clustering) divides a population into smaller subpopulations with similar behavior. Clustering methods maximize homogeneity within a group and maximize heterogeneity between the groups. A description task focuses on explaining the relationships among the data.

A variety of DM and machine learning algorithms have been proposed to automate or at least to support market segmentation and product positioning [55, 15]. Market basket analysis (also known as Association Rule Mining (ARM)) is widely used to discover customer purchasing patterns by extracting associations or co-occurrences from transactional databases [56]. Agard and Kusiak utilized DM clustering techniques and
ARM to analyze the functional requirements in a new product development process and thereby solve the customer segmentation problem [57]. Later works by Kusiak illustrated the benefits of DM in a wide range of diversified industries, such as biotechnology, energy, pharmaceutical, etc [51]. Yu and Wang proposed a genetic algorithm-based ARM approach to capturing CNs and defining product specification [58]. Chen et al. used the machine learning method of Self-Organizing Map (SOM) to transfer customer requirements into a specific product concept by considering affective factors from both customers and designers [59]. Kuo et al. introduced a two-stage method that combined SOM with the K-means algorithms [60]. Initially, SOM determined the number of clusters and the starting point. Subsequently, the K-means method was used to find the final solution. Tsai and Chiu embedded GA into a purchase-based segmentation algorithm to identify market segmentation, based on product specific variables, such as the purchased items and associated monetary expenses from transactional customer histories [61]. Han et al. presented an market segmentation model using weighted fuzzy K-means to support category management in convenience store chains [62]. Using three examples, including retail sales forecasting, direct marketing and target marketing, Venugopal and Baets demonstrated the capability of Artificial Neural Networks (ANNs) in marketing management [63].

The successful development of DM-based knowledge discovery is a key issue to achieve objective decision support for marketing research problem-solving [64]. Intelligent DM and machine learning techniques can be used to extract nontrivial and potentially useful patterns and information from otherwise incomprehensible data sets. These techniques provide explicit information that has a human readable form and they can be used to solve classification or forecasting problems. Decisions, based upon the extracted patterns, will be more reliable [64]. Plank observed that management decisions were affected by the availability and use of market data [65]. However, many companies lack both data and expertise to harvest useful information which helps them make informed decisions.
and act on them[18]. Therefore, making market data directly accessible to decision makers and providing decision support are essential for the success of a company[66]. The access must be as barrier free as possible and the decision support must be as reliable as possible to ensure usability and to create a positive impact on management decisions, targeting specific market segments and product offerings.

Intelligent algorithms and advanced information technology have made cluster-based marketing research more relevant. However, from the literature review, we discovered that most researchers selected the methods and techniques without a coherent strategy on an ad-hoc basis. Fewer efforts were devoted into the discussion of applicability and fitness of the existing methods[67]. K-means is one of the most commonly used algorithms in market research. Apart from the K-means method, some research explored theGA andANN ANN-based clustering has been dominated bySOM and Adaptive Resonance Theory (ART). There are only a few publications which compared limited number of differentDM and machine learning techniques. Balakrishnan et al. comparedSOM with K-means, and found that the former performed significantly worse than K-means when applied to simulated data[68]. Hruschka and Natter compared the performance of K-means andANN approaches for market segmentation using a real life dataset[69]. They found K-means algorithm failed in discovering any somewhat stronger cluster structure. Kuo et al. combinedPSO and K-means into Particle Swarm K-means Optimization (PSKO) to solve clustering problem[70]. The authors compared the proposed method with genetic K-means algorithm andPSO and claimed thatPSKO yielded better result.

We found that every market research problem requires us to search a suitable algorithm structure, because different algorithms, for the same task, have different merits and shortcomings. It is impossible to know a priori which algorithm or combination of algorithms give the best results. Therefore, to select the best algorithms is empirical science where possible algorithms and algorithm combinations are tested. In order to provide reliable decision support for market segmentation and product positioning, there
is a clear need for a method that compares all the representative computation intelligent
techniques, thus chose the most suitable algorithm structure for a problem at hand.

2.3 Multi-objective decision support problems

Since the late 1990s, there has been a growing recognition in the engineering design
research community that decisions are a fundamental construct in engineering design
[71]. In product family design, each product variant has its own performance targets and
specific desired characteristics. Therefore, multiple goals must be considered in product
family design. At the heart of all product family designs lies a multi-objective optimiza-
tion problem [10]. According to Simpson et al., more than 40 different optimization-based
methods have been developed to support multiple criteria decision-making [10].

Among the decision making methods, the cDSP is a general framework for solving
multi-objective, non-linear, optimization problems [72]. The cDSP decision model is used
to determine values of design variables that satisfy a set of constraints and bounds while
achieving a set of conflicting goals. The cDSP method provides flexible decision sup-
port for practitioners by suggesting a compromise among multiple goals while satisfying
constraints and bounds. But, it has several limitations: (1) Uncertain goal values; (2) It-
erations required to set weights or priority levels; (3) Designers preferences are restricted
to a linear form or to priority levels; (4) Sensitive to target values [73].

Utility theory is a branch of decision theory in which a decision maker’s preferences
are assessed under conditions of risk and uncertainty. Its strength lies in the fact that it is
based on rigorous mathematics and axioms. The method captures designer preferences
with a quantitative model, through the development of an expected utility function
[74]. If an appropriate numerical utility function can be developed, a designer can rank
possible alternatives by calculating their expected utilities and choosing the one with the
highest expected utility. This rational decision making process has significant advantages
Figure 2.2: Augmenting the compromise DSP with utility theory to form u-cDSP

when a designer faces a large number of objectives, for which simultaneous and ad hoc considerations are extremely difficult and the uncertainty and trade-offs between the attributes become crucial [75].

By augmenting the DSP with utility theory, Seepersad developed Utility-Based Compromise Decision Support Problem (u-cDSP) [75]. The method achieves preference consistent consideration of non-deterministic goals in multi-objective Decision Support Problems (DSPs). The fusion of the critical components of the two constructs is shown in Figure 2.2. The mathematical formulation of the u-cDSP is shown in Table 2.1. It is similar to the conventional DSP. However, the system goals and objective functions are formulated using utility theory. The deviation function of the u-cDSP is formulated to minimize deviation from the target expected utility (i.e., 1 is the most preferable value), which is mathematically equivalent to maximizing the expected utility. To formulate the u-cDSP deviation function involves four steps:

Step 1: assess utility functions for each goal.
Step 1: assess utility functions for each goal

The first step of the u-cDSP formulation is to assign a utility value for various goal values. This utility value quantitatively reflects the designer preference. Determining the utility value includes identifying both the designer’s qualitative and quantitative preference characteristics for the levels of each goal [76]. The qualitative preference can be characterized as either monotonic or non-monotonic. Monotonic preferences describe instances in which a designer consistently prefers either strictly more or less of an attribute. Non-monotonic preferences describe a scenario in which a designer has a preference for one specific value, and the closer a characteristic is to this ideal, the more it is desired.

Another qualitative preference characteristic involves the curvature (i.e., either concave or convex) of his/her utility function with respect to a particular attribute, as shown in Figure 2.3. Concave utility functions imply risk aversion, while convex utility functions imply risk proneness.

Step 2: combine utility functions for individual goals into a multi-attribute utility function.

Step 3: formulate system goals.

Step 4: formulate the deviation function.
Table 2.1: Mathematical form of the utility-based compromise decision support problem.

<table>
<thead>
<tr>
<th>Given:</th>
<th>An alternative to be improved through modification. Assumptions used to model the domain of interest. The system parameters. All other relevant information.</th>
</tr>
</thead>
<tbody>
<tr>
<td>n</td>
<td>number of system variables</td>
</tr>
<tr>
<td>$p+q$</td>
<td>number of system constraints</td>
</tr>
<tr>
<td>p</td>
<td>equality constraints</td>
</tr>
<tr>
<td>q</td>
<td>inequality constraints</td>
</tr>
<tr>
<td>m</td>
<td>number of system goals</td>
</tr>
<tr>
<td>$g_i(X)$</td>
<td>system constraint function</td>
</tr>
<tr>
<td>$A_i(X)$</td>
<td>system goals</td>
</tr>
<tr>
<td>$U_i(A_i(X))$</td>
<td>utility function for each goal</td>
</tr>
<tr>
<td>$U(X)$</td>
<td>overall, multi-attribute utility function $= f[u_1(A_1(X)), u_2(A_2(X)), ..., u_m(A_m(X))]$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Find:</th>
<th>The values of the independent system variables (that describe the physical attributes of an artifact).</th>
</tr>
</thead>
<tbody>
<tr>
<td>$X = X_1, ..., X_j$</td>
<td>$j = 1, ..., n$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Find:</th>
<th>The values of the deviation variables (that indicate the extent to which target utilities are achieved).</th>
</tr>
</thead>
<tbody>
<tr>
<td>d^-_i, d^+_i</td>
<td>$i = 1, ..., m$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Satisfy:</th>
<th>The system constraints that must be satisfied for the solution to be feasible. There is no restriction place on linearity or convexity.</th>
</tr>
</thead>
<tbody>
<tr>
<td>$g_r(X) = 0$</td>
<td>$r = 1, ..., p$</td>
</tr>
<tr>
<td>$g_r(X)X \geq 0$</td>
<td>$r = p + 1, ..., p + q$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Satisfy:</th>
<th>The system goals that must achieve a target utility to the extent possible. There is no restriction place on linearity or convexity.</th>
</tr>
</thead>
<tbody>
<tr>
<td>$E[u_i(A_i(X))] + d^-_i + d^+_i = 1$</td>
<td>$i = 1, ..., m$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Satisfy:</th>
<th>The lower and upper bounds on the system variables.</th>
</tr>
</thead>
<tbody>
<tr>
<td>$X_{j_{min}} \leq X_j \leq X_{j_{max}}$</td>
<td>$j = 1, ..., n$</td>
</tr>
<tr>
<td>$d^-_i, d^+_i \geq 0$</td>
<td>and $d^-_i \cdot d^+_i = 0$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Minimize:</th>
<th>The objective function:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Case a:</td>
<td>additive multi-attribute utility function $Z = 1 - E[U(X)] = \sum_{i=1}^{m} k_i(d^-_i + d^+_i)$</td>
</tr>
<tr>
<td>Case b:</td>
<td>multiplicative multi-attribute utility function $Z = 1 - E[U(X)] = 1 - 1/K \left(\prod_{i=1}^{m} [K k_i E[u_i(A_i(X))] + 1] \right) - 1$</td>
</tr>
<tr>
<td></td>
<td>$= 1/K \left(\prod_{i=1}^{m} [K k_i (1 - (d^-_i + d^+_i)) + 1] \right) - 1$</td>
</tr>
</tbody>
</table>

25
Table 2.2: Descriptors and definitions for single attribute utility function assessment.

<table>
<thead>
<tr>
<th>Definition</th>
<th>Utility value</th>
</tr>
</thead>
<tbody>
<tr>
<td>The decision maker’s ideal attribute level – beyond which the decision maker is indifferent to further attribute improvements.</td>
<td>1</td>
</tr>
<tr>
<td>The decision maker is indifferent between obtaining a design alternative with a ‘desirable’ attribute value for certain and a design alternative with a 50–50 chance of yielding either a tolerable or an ideal attribute level.</td>
<td>0.75</td>
</tr>
<tr>
<td>The decision maker is indifferent between obtaining a design alternative with a ‘tolerable’ attribute value for certain and a design alternative with a 50–50 chance of yielding either an unacceptable attribute value or an ideal attribute value.</td>
<td>0.5</td>
</tr>
<tr>
<td>The decision maker is indifferent between obtaining a design alternative with an ‘undesirable’ attribute value for certain and a design alternative with a 50–50 chance of yielding either a tolerable or an unacceptable attribute value.</td>
<td>0.25</td>
</tr>
<tr>
<td>The decision maker’s unacceptable attribute level – beyond which he/she is unwilling to accept an alternative.</td>
<td>0</td>
</tr>
</tbody>
</table>

Once the qualitative preference characteristics are established, the next step is to specify points along each utility curve so that a utility function can be fitted to the data to represent the designer’s preferences. First, the designer specifies an ideal value (a utility of 1) and an unacceptable value (a utility of 0). The values in between these two extremes are usually assigned via so called lotteries. A lottery is a hypothetical situation in which the outcome of a decision is uncertain [74]. Generally, at least five points are identified along the decision maker’s utility curve. Definitions for each point are provided in Table 2.2. The preference assessment procedure must be repeated for each goal separately. Subsequently, utility equations are determined by fitting a curve to the points of the designer preference.

Step 2: combine utility functions for individual goals into a multi-attribute utility function

After the individual utility functions are developed, they are combined into a multi-attribute utility function. The following equation shows an example of an additive multi-
attribute utility function:

\[U = \sum_{i=1}^{n} k_i u_i(A_i) \]

(2.1)

where \(u_i(A_i) \) is an individual utility function of an attribute \(A_i \), \(k_i \) is a scaling constant, and \(U \) is the total expected utility. The scaling constants reflect the preference between attributes. They can be methodically determined by solving a system of equations, where different attributes are compared in order to evaluate the scaling constants. Numerous consistency checks can be planned and implemented. The preferred alternative should have a larger utility value.

Step 3: formulate system goals

The system goal is for the system utility to reach the ideal value (=1). Thus, the system goal formulation becomes:

\[E[u_i(A_i)] + d_i^- + d_i^+ = 1 \]

(2.2)

where \(E(\ldots) \) is the expectation function.

Step 4: formulate the deviation function

The deviation function is formulated to minimize deviation from the target utility (i.e., 1) which is mathematically equivalent to maximizing the utility. The additive multi-attribute utility function is provided below [73]:

\[Z = 1 - E[U(X)] = \sum_{i=1}^{n} k_i(d_i^- + d_i^+) \]

(2.3)

In this thesis, the u-cDSP is central to modeling multiple design objectives and assessing the trade-offs pertinent to product family design. The implementation of the u-cDSP is illustrated in Chapter 7.
2.4 Additive manufacturing facilitates customization

Many enterprises use product family design strategies to increase product customization and reduce time to market while keeping the cost under control. The design of platforms, within a product family, enables manufacturers to maintain the economic benefits of having common parts and processes (reduced system complexity, reduced development time and costs) while still being able to offer variety to customers [13]. Thevenot et al. [43] developed a product variety trade-off evaluation method which helps designers to balance all factors that determine platform commonality and individual product performance within a product family. Jiao and Tseng [77] developed a product family architecture model to handle the trade-offs between diverse customer requirements, design re-usability and process capabilities. Martin and Ishii [40] introduced a design for variety method, that includes the generational variety index and the coupling index, to help reduce the design effort and time-to-market for products of a family. Williams et al. [78] proposed an optimization-based platform design approach, called the augmented product platform constructal theory method, which enables designers to systematically manage modularity and commonality in the design of both product and process platforms. Common to the aforementioned research work is the realization that a successful product platform must balance the performance and commonality of individual products in the family. However, performance and commonality are two conflicting objectives, a sharing platform for all products in the family means to compromise in one way or another. Furthermore, product variety induced manufacturing complexity has become a significant problem [44]. Offering affordable customization is the foremost difficulty that enterprises face when they follow the product family design paradigm. Most of the product family design literature focuses on methodologies that optimize processes in the traditional manufacturing technology context. However, new technology, especially new manufacturing technology, can be a game changer. Porters was among the first
researchers who realized the transformational power of technology \[21\]. In his influential work on competitive strategy, he suggested that technology is perhaps the most important single source of major market share changes among competitors and it can lead to the demise of an entrenched dominant firm.

AM refers to the process of fabricating parts layer-by-layer directly from a Computer Aided Design (CAD) model. **AM** production technique is clearly distinguished from other conventional manufacturing techniques, such as machining (material removal) or casting (deform material). Some common **AM** processes include Stereolithography (SL), Fused Deposition Modeling (FDM), Selective Laser Sintering (SLS) and 3D printing. These processes share some similarities, but they also have a number of distinguishing properties. Initially, we introduce the common **AM** processes. More detailed reviews of numerous **AM** technologies can be found in \[79, 80\].

The development of **SL** processes can be traced back to the mid-1980s. The process produces parts one layer at a time by curing a photo-reactive resin with a Ultraviolet (UV) laser or another similar power source. At present, 3D Systems™ is the predominant manufacturer of **SL** machines in the world. The two main advantages of **SL** technology over other **AM** technologies are part accuracy and surface finish, in combination with average mechanical properties \[81\].

Powder Bed Fusion (PBF) processes were among the first commercialized **AM** processes. Developed at the University of Texas at Austin, USA, **SLS** was the first commercialized **PBF** process. The schematic in Figure 2.4 shows the its basic method of operation. All **PBF** processes share a basic set of characteristics. These include one or more thermal source for inducing the fusion between powder particles, a method for controlling powder fusion to a prescribed region of each layer, and mechanisms for adding and smoothing powder layers \[79\]. The **SLS** process works with a variety of thermoplastic materials, such as polyamide and Acrylonitrile Butadiene Styrene (ABS), it also works with metal and ceramic powders. In **PBF** the loose powder bed is a sufficient
support material for polymer PBF. This saves significant time during part building and post-processing, and enables advanced geometries that are difficult to be post-processed when supports are necessary. Accuracy and surface finish of powder-based AM process are typically inferior to liquid-based processes. However, accuracy and surface finish are strongly influenced by the operating conditions and the powder particle size. The ability to nest polymer parts in 3-dimensions enables many parts to be produced in a single build, thus dramatically improving the productivity of the PBF process when compared with processes that require supports.

The FDM process, which is produced and developed by Stratasys™, uses a heating chamber to liquefy a polymer that is fed into the system as a filament. The filament is pushed into the chamber by a tractor wheel arrangement. The major strength of FDM is in the range of materials that can be used for manufacturing and good mechanical properties of the resulting parts. For example, parts made using FDM are amongst the strongest for any polymer-based AM processes [79].
From the brief introduction above, it is clear that each AM process builds 3D objects in layers, the means by which the layers are built differ from method to method. With the unique capabilities for fabricating components with high complexity in shape, function, and material, AM technologies have greatly increased the design freedom in the product development area [79]. Holmström et al. [82] suggested the unique characteristics of the AM production lead to the following benefits:

- No tooling is needed, significantly reducing production ramp-up time and expense.
- Small production batches are feasible and economical.
- Possibility to execute rapid design changes.
- Allows the product to be optimized for a specific function.
- Allows economical custom products (batch of one).
- Possibility to reduce waste.
- Potential for simpler supply chains; shorter lead times and lower inventories.
- Design customization.

Over the past two decades, the research community has developed novel AM processes and applied them in the aerospace [83, 84], automotive [85] and biomedical [86] fields. These AM processes and applications differ from each other in terms of stock material types, material bonding mechanism, dimensional accuracies, post-processing requirements, etc. [8]. The differences open up a wide range of options for product designers. As a consequence, Rosen [87] puts forward that, in order to take advantage of these unique technologies, we have to move to Design for Additive Manufacturing (DFAM) from Design for Manufacture (DFM). The DFAM principles and strategies have been explored in the literature. Gibson et al. [79] defined the goals of DFAM as ‘maximize product performance through the synthesis of shapes, sizes, hierarchical structures, and
material compositions, subject to the capability of AM technologies\(^n\). The definition sparked lots of research and design studies related to AM. For example, Hague et al. \(^\text{88}\) studied and summarized design rules for SL and SLS based on DFM guidelines for injection molding. They found that some DFM rules for injection molding are not applicable to AM. In other words, AM overcomes many limitations of conventional manufacturing processes. Su et al. \(^\text{89}\) suggested a set of design guidelines of non-assembly mechanism built in one piece using Selective Laser Melting (SLM). Maidin et al. \(^\text{90}\) constructed a design feature database for AM which enabled users to visualize and gather information in the conceptual design stage. Xu et al. \(^\text{91}\) developed generic models to help the designers select the most suitable AM process for a specific part creation.

The increased capabilities of AM techniques pave the way for optimized design approaches, such as topology optimization. In many cases, designs from topology optimization, although optimal, may be impossible to manufacture with traditional manufacturing methods. In recent years, topology optimization has emerged as a promising approach to utilize the benefits of AM as manufacturing tool \(^\text{92}\). For example, Rezaie et al. \(^\text{93}\) developed a methodology which conceptualizes the application of topology optimization to design parts built by FDM.

With AM technologies, a manufacturing cell that includes both fabrication and assembly becomes possible. Furthermore, without tooling needs, AM processes could be particularly interesting for practitioners of mass customization. For example, Siemens Hearing Instruments, Inc. produces hearing aid shells that fit into individual ears using SLM technology \(^\text{94}\). In 2007, the company claimed that about half of the in-the-ear hearing aids, that it produced in the US, were fabricated using AM technologies. For a consumer goods market, that deals with electronic devices, the electronics inside may remain the same while the outside housing can be customized for a particular customer. The manufacturing cost, associated with the customization, would be no higher than the manufacturing cost of generic items. Production planning and control will become
much more important however – particularly in terms of the information technology systems. Instead of having to warehouse parts, and/or tooling, a manufacturer just needs to maintain individual customer data and corresponding electronic design specifications. However, the product data management challenge will be enormous.

Most of the existing research, related to AM, analyzed singular part designs, with a special focus on geometric design freedom and limitations. There is limited research which investigates the interrelation between AM and customization in product family design. However, we have reasons to belief that the interrelation holds the key for improved customization. As a consequence, there is a need for design models to bridge these two paradigms such that they benefit from each other in order to achieve affordable customization in the product family development area.

2.5 Summary and preview

The role of Chapter 2 is to present, discuss and critically evaluate the building blocks of a data-driven product family design method for AM. The discussions aim to explain and justify the research challenges introduced in Chapter 1. The following list details how the discussion in this chapter justified and contributed to the theoretical structural validation of the proposed method.

- Section 2.1 reviewed product family design methods and tools with a focus on scalable product families. Section 2.2 critically reviewed DM and machine learning techniques in the domain of product family design. We argued that these advanced techniques are effective for information extraction and provide informed decision making. The data-driven method is formalized into a Decision Support System (DSS) for market segmentation and product positioning in Section 3.2.1. The detailed method is implemented in Chapter 4 and validated in Chapter 5.
- Section 2.3 reviewed the DSP methods. The u-cDSP is employed as a mathematical
framework for modeling product family design decisions involving multiple objectives in Section 3.2.3. The u-cDSP is formulated and solved for design of finger pump design in Chapter 7.

- Section 2.4 reviewed the state-of-the-art AM technologies. These enabling technologies are integrated to product family design process in Section 3.2.2 and it is developed in Chapter 6 for customized cantilever beam family designs.

- The three building blocks are merged into the data-driven product family design for AM. It is implemented and validated in Chapter 7.

In the next chapter, these constitutive elements are integrated to create the proposed method.
Chapter 3

A data-driven product family design method for additive manufacturing

Designing a product family in a dynamic contemporary environment requires us to rethink the way how our creations provide value to customers over time. This chapter elaborates on these thought processes and presents results to some of the most pressing problems. The results center on data-driven product family design for Additive Manufacturing (AM). Section 3.2 introduces the details of the proposed method, along with the employed tools. Section 3.3 concludes the chapter and with a look ahead to the implementation of the proposed method and the example problems through Chapter 4 to Chapter 7.

3.1 Overview and rationale

This section links the research gaps, identified in the literature review of Chapter 2, with the research hypotheses put forward in Section 1.2. During the literature review, we found that a successful product platform must balance performance and commonality of individual products in the family. Performance and commonality are two conflicting
objectives, a shared platform for all products in the family means to establish an agreement which resolves the conflict. The way in which the agreement is reached depends also on the product variety induced manufacturing complexity, because manufacturing complexity is a significant cost factor and sometimes there are hard technical limitations. Therefore, offering product variety without compromising individual performance and realizing product variants in a cost effective manner are challenging tasks that have to be addressed. Our main hypothesis is that the data-driven product family design method for AM has the ability to solve the problem. The following text highlights the novelty of the main hypothesis. To be specific, we relate the refined sub-hypotheses to research gaps identified in the literature review.

In Section 2.2 of the literature review, we put forward that decisions on market segmentation and product positioning are crucial for companies to meet diverse Customer Needs (CNs) and achieve its goals. The successful development of Data Mining (DM)-based knowledge discovery is a key issue to achieve objective decision support for marketing research problem-solving. However, the existing DM-based methods and techniques were selected without a coherent strategy on an ad-hoc basis. We found every market research problem requires us to establish a suitable algorithm structure, because different algorithms, for the same task, have different merits and shortcomings. In order to provide reliable decision support for market segmentation and product positioning, there is a clear need for a method that compares all the representative computation intelligent techniques, thus chose the most suitable algorithm structure for a problem at hand. To solve that problem, we put forward our research sub-hypothesis 1:

Sub-hypothesis 1: A Decision Support System (DSS) that employs advanced DM and machine learning techniques can be developed to help identify market segmentation and predict product positioning.

In Section 2.4 of the literature review, we found that most of the product family design literature focuses on methodologies that optimize processes in the traditional manufac-
turing technology context. However, new technology, such as AM, can be redefine the way we think of offering customization for identified market segments. In the AM literature, most of the research analyzed singular part designs, with a special focus on geometric design freedom and limitations. There is limited research which investigates the interrelation between AM and customization in product family design. However, we have reasons to belief that the interrelation holds the key for improved customization. As a consequence, there is a need for design models to bridge these two paradigms such that they benefit from each other in order to achieve affordable customization in the product family development area. To solve that problem, we put forward our research sub-hypothesis 2:

Sub-hypothesis 2: An AM process model for product family design can be developed to incorporate AM into product family design process in order to facilitate improved customization in target market segments.

Scalable product family designs pose multi-objective Decision Support Problems (DSPs). To solve that problem, we put forward our research sub-hypothesis 3:

Sub-hypothesis 3: A utility-based compromise DSP can be formulated to model multiple design objectives.

In order to substantiate the individual research hypotheses, we propose the data-driven product family design method for AM. The method addresses the research gaps in a logically and methodically refined way. The next section is dedicated to the introduction of the method.

3.2 The method: data-driven product family design for additive manufacturing

This section introduces data-driven product family design for AM and it illustrates how the proposed method addresses the research questions. By addressing the research questions, we validate the research hypotheses. Before we embark on outlining the details
of data-driven product family design for AM, we introduce a general model for product family design. Mathematically, a product family F, with n individual products, is defined as the set:

$$F = \{ p_i \mid i = 1, 2, ..., n \}$$ \tag{3.1}$$

where p_i is a vector which describes the individual product. In turn, the individual product p is defined by attributes pr:

$$p = \begin{bmatrix} pr_1 \\ pr_2 \\ \vdots \\ pr_r \end{bmatrix}$$ \tag{3.2}$$

where r is the number of attributes. Product attributes are the result of a functional relationship of the product characteristics, price and other marketing mix variables. Product attributes take the form of a real number. For example, the dimension of the product in x, y and z directions constitutes three distinct attributes. Based on these considerations, it follows that the product family F spans an r dimensional vector space \mathbb{R}^r and each of the n individual products p_i is represented by one point in the vector space. Having a good understanding of the mathematical foundations helps us grasp the specific steps involved in crafting the proposed method.

In this thesis, product families are realized by scaling product platforms that represent a common set of design variables and technologies around which the product family can be developed. We assume that the design variables are known a priori. The proposed method is partitioned into four logical steps: (1) data-driven market segmentation and product positioning, (2) redefine customization for AM, (3) formulate a Utility-Based Compromise Decision Support Problem (u-cDSP), and (4) solve the DSP. The inputs to the proposed method are the product family requirements and constraints, the market
Figure 3.1: Overview diagram of the data-driven product family design for [AM] method.

3.2.1 Step 1: data-driven market segmentation and product positioning

The first step identifies market segmentation and product positioning. The market segmentation provides a link between management, marketing, and engineering design. It helps decision makers identify which type of leveraging strategy can be used to meet the overall design requirements and realize a suitable product family. The data from
both consumers and competitors form the basis for market segmentation and product positioning.

The market data that contains the needed information, i.e. the customer preference data, is collected and standardized. The individual customers differ in their perception of product attributes. Thus the customer preferences can be represented by a set of product attributes $P = \{pr_x|x = 1, 2, ..., r\}$. Suppose a total of N customer preference data sets are analyzed with cluster-based DM methods. The clustering process identifies the preference data pattern, because the data structure is shaped by the CN. The extracted information represents customer groups that share the same or very similar value criteria. The core idea revolves around the fact that we interpret the clustering result as market segmentation. Based on the analysis, customers are isolated and grouped into n clusters, as shown in Table 3.1. Mathematically, the market segmentation is represented as:

$$G_y | \forall y = 1, 2, ..., n$$ \hspace{1cm} (3.3)

where $n \leq N$, denote the market segments. Each market segment is related to a specific set of product attributes P. By ordering the product attribute sets we form n product vectors \mathbf{p} which belong to the product family F.

Table 3.1: Market segmentation matrix.

<table>
<thead>
<tr>
<th>Cluster</th>
<th>Customer preferences</th>
</tr>
</thead>
<tbody>
<tr>
<td>1(20%)</td>
<td>G_1</td>
</tr>
<tr>
<td>2(15%)</td>
<td>G_2</td>
</tr>
<tr>
<td>...</td>
<td></td>
</tr>
<tr>
<td>n(10%)</td>
<td>G_n</td>
</tr>
</tbody>
</table>
In Table 3.1, the customers who belong to the same cluster have similar preference for a specific product. Table 3.1 also provides useful information about the size of each cluster. For example, 20% of the customer population for cluster 1, 15% for cluster 2 and 10% for cluster G_n. Consumer behavior studies suggest that the consumers falling into the same cluster usually hold the same purchase trend and thus the customer can be satisfied by providing such a product that the total variations of functionality from what the customer prefers are the smallest [95]. Furthermore, the information may be used to help product configuration and production capacity estimation.

Based on the market segmentation, machine learning techniques are employed to provide decision support on product positioning. The product positions are influenced directly by the product attributes. In order to objectify both market segmentation and product positioning decisions, we develop a DSS that integrates powerful data management with robust analytical methods into an intuitive Graphical User Interface (GUI). We realized that every DSS problem requires a suitable algorithm structure, because different algorithms, for the same task, have different merits and shortcomings and it is impossible to know a priori which combination of algorithms gives the best results. Therefore, to select the best algorithms is empirical science where the possible combinations are tested. Therefore, the proposed DSS for market segmentation and product positioning is partitioned into four subsystems including (1) data subsystem, (2) offline model subsystem, (3) online model subsystem and (4) dialog subsystem. Figure 3.2 gives the overview of the DSS. In the data subsystem, the data set, that contains the needed information, is collected and stored. Data standardization and accessibility are a prerequisite to realize the promise of DSS. Hence, a data conditioning software is employed to build up database tables from the collected data set. The data subsystem offers robust, reliable, and efficient data storage and easy retrieval for large volumes of data. Based on a user’s need, the selected data from the data subsystem will be fed into offline subsystem. The offline subsystem performs clustering using representative DM and machine
Once the market segmentation is identified and the targeted market segments are chosen, the next step is to define a customization space and offer customization to different market segments. The “space of customization” is defined as the set of all feasible value combinations of product attributes that a manufacturing enterprise is willing to satisfy.

3.2.2 Step 2: redefine customization for additive manufacturing

Once the market segmentation is identified and the targeted market segments are chosen, the next step is to define a customization space and offer customization to different market segments. The “space of customization” is defined as the set of all feasible value combinations of product attributes that a manufacturing enterprise is willing to satisfy.
It is defined by three components:

- Customization parameters to be offered. The number of parameters determines the dimension of the customization space. For example, offering different pump flow rates defines a one-dimension customization space.

- The range of each customization parameter. The range values are usually defined by economic or technological limitations. The customization space is not limited to continuous variables. It can be formed by continuous, discrete or mixed-valued requirements. For example, pump flow rate range from 100 ml/min to 1000 ml/min.

- The analysis of the demand of the targeted market segments.

As discussed in Section 2.4, AM technology provides more flexibility in product family design when compared to traditional manufacturing methods. The unique properties of AM will fundamentally alter considerations about commonality and customization in product family design. With this enabling technology, the ultimate aim is to offer individual customization where the CNs are fully satisfied. Due to the AM processes restrictions, the DFAM guidelines have to be incorporated into the product family design process.

This step follows the DFAM guidelines that are developed by Gibson et al. [79].

- AM enables the usage of complex geometry in achieving design goals without incurring time or cost penalties compared with simple geometry.

- AM enables the usage of customized geometry and parts by direct production from 3D data.

- With AM it is often possible to consolidate parts by integrating features into more complex parts and avoiding assembly issues.

- AM allows designers to ignore all of the constraints imposed by conventional manufacturing processes.
Table 3.2: Formulation of the utility-based product family design problem.

<table>
<thead>
<tr>
<th>Given:</th>
<th>Parametric scaling variables requirements that define the individuals in the product family, (n) is number of individuals. An appropriate mathematical model user preferences for objectives (if needed).</th>
</tr>
</thead>
<tbody>
<tr>
<td>Find:</td>
<td>The values of the design and scaling variables, (x_{ij}, i = 1, ..., n, j = 1, ..., r).</td>
</tr>
<tr>
<td>Satisfy:</td>
<td>Goals: (u_g, g = 1, ..., m), defined by the designer. (e.g. weight, cost and efficiency)</td>
</tr>
<tr>
<td></td>
<td>Constraints: Defined by the designer. (e.g. failure criteria, design limits and cost)</td>
</tr>
<tr>
<td></td>
<td>Bounds: (x_{ij,\text{min}} \leq x_{ij} \leq x_{ij,\text{max}})</td>
</tr>
<tr>
<td>Minimize:</td>
<td>The objective function (Z = 1 - U).</td>
</tr>
<tr>
<td></td>
<td>(U) is given in Equation 3.4</td>
</tr>
</tbody>
</table>

To translate the benefits of AM into customization and cost reduction, a novel product family design model is proposed. The details of the model development is presented in Chapter 6. The validation of the proposed process model is tested in designing a family of cantilever beams.

3.2.3 Step 3: formulate a utility-based compromise decision support problem

In this step, appropriate ranges of the design variables, i.e. the upper and lower limits are identified. The product family design constraints and objective functions are also identified. Examples of objective functions for product family designs include the minimization of cost, maximization of profit, and maximization of product performance.

Once design variable ranges, constraints and objective functions are identified, the product family optimization problem is formulated using u-cDSP. The mathematical form of the u-cDSP is presented in Table 3.2.

The formulation of the u-cDSP follows the four steps presented in Section 2.3. The steps are reproduced here for reference:
• Assess the utility functions for each goal. Initially, we have to identify the designer’s qualitative and quantitative preference characteristics for the five utility value levels of each goal. Subsequently, we have to fit a utility function to the designer’s preferences based on the utility value levels of each goal. In this thesis, the designers’ preferences for each objective are modeled as risk averse (i.e., preference to act conservatively by avoiding risks), because most designers, under most circumstances, are risk averse. They prefer alternatives that offer on-target outcomes to those that have considerable chances of yielding undesirable results. Once the identification of preferences is done, each utility function is fit to the five points assessed according to Table 2.2.

• Combine utility functions for individual goals into a multi-attribute utility function. We suppose that both the utility independence and additive independence of multiple goals hold true. Hence, a designer’s risk aversion, for the utility levels of a goal, is constant, regardless of the utility levels associated with other goals. Furthermore, there are no interactions between the designer’s preferences for different goals. In this case, the sum of the scaling constants of individual goals equals to 1, that is: \(\sum_{g=1}^{m} k_g = 1 \). Therefore, the expected utility function is formulated as an additive multi-attribute utility function, as shown in Equation 3.4.

\[
U = \sum_{g=1}^{m} k_g u_g
\]

(3.4)

where \(k_g \) is a scaling constant for the goal \(u_g \).

• Formulate system goals. The utility functions are normalized such that the result values are within the range from 0 to 1 (with 1 corresponding to the most preferred goal value, and 0 stands for the least preferred goal value). Therefore, the target
value in the goal formulation is 1. The system goal is formulated as:

\[E[u_t(A_t)] + d_i^- + d_i^+ = 1 \] \hspace{1cm} (3.5)

- Formulate the deviation function. The deviation function is formulated to minimize the deviation from the target utility (i.e. 1) which is mathematically equivalent to maximizing the utility. The deviation function of additive multi-attribute utility functions is formulated as follows:

\[Z = 1 - E[U(X)] = \sum_{i=1}^{m} k_i(d_i^- + d_i^+) \] \hspace{1cm} (3.6)

Chapter 7 illustrates the formulation of the u-cDSP in detail for the design of a finger pump family.

3.2.4 Step 4: solve the decision support problem

The final step is to obtain a solution for the multi-objective u-cDSP formulated in the previous step. As discussed by Williams [97], there are two methods for analyzing the design space: through continuous evaluation, or through numerical discretization of the space. Though the continuous evaluation approach represents the most rigorous and exact technique, it is limited by the need defined by the objective functions as well as the requirement that the demand scenarios must be functions of the design specifications. The requirement adds considerable complexity to the derivation of the objective functions, and ultimately excludes the integration of objective or demand functions, because they cannot be solved analytically. To circumvent these limitations, Williams proposes a discrete analysis whereby the design space is approximated by multiple discrete points across the space. We have adopted this approach for solve the multi-objective DSP.

There are several algorithms, such as exhaustive search, generalized reduced gradient,
and sequential quadratic programming, can be used to find the design solution. The exhaustive search algorithm locates the design solution with a minimum deviation function value that satisfies all of the constraints and bounds. If a generalized reduced gradient algorithm was employed, then it is necessary to investigate whether the algorithm converged and whether it converged to a desirable region of the design space. With an exhaustive search, these investigations are not necessary. It is important to check that the constraints on the deviation variables have been satisfied. The exhaustive search algorithms insure that the constraints are satisfied. Therefore, we employed an exhaustive search algorithm to find a solution for the example problem in Chapter 7.

3.3 Summary and preview

Product family design is a complex process involving intensive decision making activities. It is of paramount importance to use effective methods which help designers make the right decisions. The role of this chapter is to:

- Present the data-driven product family design for AM method. Both Chapters 4 and 5 use and evaluate DM as well as machine learning techniques extensively. It is understood that the presented techniques don’t exhaust all the possible ways in which to identify market segmentation and product positioning. However, the chapters provide a blue print on how to construct a framework for robust data-driven decision support.

- Incorporate AM into the product family design methodology in order to facilitate improved mass customization. A case of design a family of cantilever beams is presented in Chapter 6. The key contribution is the infusion of AM into the product family design process. Chapter 7 extends this idea further.

- Present the formulation of the u-cDSP. The details of how the u-cDSP can be formulated, including the cost model for Selective Laser Sintering (SLS), are pre-
sented in Chapter 7. An empirical structure and permanences are presented and benchmarked.

This chapter provides a comprehensive and well-defined framework to assist data-driven decision making in the product family design. The following chapters illustrate the data-driven product family design for AM method and evaluate the proposed method with case studies.
Chapter 4

A data-driven decision support system for market segmentation and product positioning

Making sense of market data is of paramount importance for competitive companies that seek to address diverse Customer Needs (CNs). Meaningful market data is necessarily high dimensional and large in volume. As a consequence, human interpretation of such data is error prone and time intensive. With the current state of information technology, better methods for market data interpretation are based on Data Mining (DM) and machine learning. In an attempt to harvest the analytical power of modern DM and machine learning algorithms, we present a data-driven Decision Support System (DSS) that mines important information from market data to identify market segments without predefined ones, and it provides decision support for product positioning. Section 4.2 introduces the DM and machine learning techniques, including Principle Component Analysis (PCA), K-means, and AdaBoost classification, that construct the DSS for market segmentation and product positioning. The DSS implements Step 1 of the proposed
method, as outlined in Chapter 3. Section 4.3 describes the automotive case study and the instantiation of the DSS. The results are reported along with a discussion. Section 4.4 summarizes the case study and its role in the verification and validation strategy for the thesis.

4.1 Overview of the decision support system

Market segmentation and product positioning aims to establish the properties of products a firm should offer to customers in specific market segments. Product design is concerned with establishing the physical product characteristics \[98\]. Both product positioning and product design are non-stationary processes, i.e. they change over time and they influence each other in complex ways. Therefore, decision makers have to concurrently consider, which (a) market segments to serve, (b) competitors to challenge, and (c) product characteristics to select \[99\]. DM techniques, that assimilate training sets, based upon available data, help us to identify market segments, but these techniques are unlikely to provide support for decision problems in the area of product positioning and design. The knowledge discovery for the design intentions and marketing strategies should be modeled, such that they can be retained throughout the product development process \[100\]. The knowledge discovery requires clear modeling techniques, which incorporate advanced decision making tools and utilities for early design stage decision making \[101\].

DSS frameworks provide a modeling strategy by combining knowledge discovery and automated decision making. In the early 1970s, DSSs were developed as a new type of tools which integrate DM with artificial decision making \[102\]. Power defined a DSS as “an interactive computer-based system or subsystem intended to help decision makers use communication technologies, data, documents, knowledge and/or models to identify and solve problems, complete decision process tasks, and make decisions” \[103\]. In the early product design and development stage, it is difficult to make precise and objective
decisions due to a lack of information. Eeckhout and De Bosschere put forward that early design stage decision support tools can provide extremely valuable information for designers and decision makers [104]. There are many approaches being used for engineering design, such as Pugh's selection matrix [105], Analytic Hierarchy Process (AHP) [106], Suh's axiomatic design [107] and design for six sigma [108]. These decision making tools enable more accurate decision making even amidst uncertain conditions. The ability to carry out robust decision making has improved both efficiency and relevance of modern [DSSs]. However, none of these methods attempt to set targets or select a design concept utilizing an enterprise-level decision criterion. Quality Function Deployment (QFD) is designed as a tool to provide an enterprise-level view to engineering design [109]. However, using only customer and competitor information to set targets without consideration of the physics of engineering attribute interactions or other product objectives, such as market size and potential profit, can result in targets that can never be achieved in practice [110]. There are various [DSSs] were developed to provide decision support in marketing research. For example, Chiu et al. developed a [DSS] for market segmentation using DM and optimization methods, however, these decision aids stop at the market segmentation step. Besharati et al. proposed a [DSS] for supporting the product design selection process [111]. The method was based on purchase or non-purchase decisions from customers and they did not consider competitors' products. Xu et al. provided appropriate evaluation and decision tools for concurrent product development [101]. Their method has value in academic research, but their approach lacks an intuitive user interface, hence applications in an industrial setting are limited. The literature review shows that both [DM] and decision making algorithms are utilized in many fields of science and engineering. However, there is no dedicated [DSS] which integrates these algorithms in a meaningful and trustworthy way to support market segmentation and product positioning simultaneously. Therefore, there is a need for [DSSs] that provide synergy early in the product development stage.
This chapter presents a DSS for market segmentation and product positioning. The proposed system is based on the proposition that DM and decision support tools make relevant market data directly available to decision makers. We achieve this goal by integrating powerful data management with robust analytical methods into an intuitive Graphical User Interface (GUI), which ensures barrier free access to decision support information. On the methodology side, our core idea revolves around the fact that we interpret the result of clustering algorithms on market data as market segmentation. Based on the market segmentation, we use machine learning to provide decision support on product positioning and design. These two concepts objectify both market segmentation and design decisions. To demonstrate the usefulness of the proposed DSS for market segmentation and product positioning, we present a case study based on the US automotive market in 2010.

4.2 The construction of the decision support system

This section describes the methods used in the proposed data-driven DSS for market segmentation and product positioning. Figure 4.1 shows an overview block diagram of the system. It is structured into two phases: I, data preparation; II, decision support with the Decision Support System Database Explorer (DSSDB Explorer). Each of these phases is realized as a separate software program written in Java [112]. On a functional level, the system reads in market data and converts it to entries in database tables. The next step employs PCA and K-means clustering to identify the market segments. An AdaBoost classifier is trained on these individual market segments, and subsequently it is used to determine the market segment to which a new product design belongs. The following subsections describe the algorithms and methods used in the implementation.
Figure 4.1: Overview diagram of the proposed DSS system.
4.2.1 Data preparation

Data standardization and accessibility are a prerequisite to realize the promise of DM. In the data preparation phase, the data set, that contains the needed information, is collected. Then a data conditioning software is employed to build up database tables from the collected data set. These database tables offer robust, reliable, and efficient data storage and easy retrieval for large volumes of data [113]. Therefore, they can be used as a basis for DSS, such as the proposed DSSDB Explorer [114].

4.2.2 Decision support with the DSSDB Explorer

This phase consists of four steps, as shown in Figure 4.1. The decision support process starts with user driven data sorting and selection. On a technical level, this is realized with Structured Query Language (SQL) statements and tabulated data display. Once the data is chosen, the data analysis step employs PCA and K-means to identify the market segments. Subsequently, the AdaBoost algorithm is used to build a classification model. This model decides to which market segment a new user defined data set belongs. Stratified cross validation is used to evaluate the performance of the decision making models. The next sections introduce the algorithms which were used to realize these functions in a bottom-up way.

Principal Component Analysis (PCA)

PCA is a mathematical procedure that uses an orthogonal transformation to convert a set of observations with possibly correlated variables into a set of values of linearly uncorrelated variables called principal components [115]. The number of principal components is less than or equal to the number of original variables. This transformation is defined in such a way that the first principal component has the largest possible variance (that is, accounts for as much of the variability in the data as possible), and each succeeding component in turn has the highest variance possible under the constraint that
it is orthogonal to (i.e. uncorrelated with) the preceding components. Principal components are guaranteed to be independent if and only if the data set is jointly normally distributed. A drawback of this technique comes from the fact that PCA is sensitive to relative scaling of the original variables. In DM applications, high dimensional data are often transformed into lower dimensional subspaces via PCA where coherent patterns can be detected more clearly [115]. K-means clustering is used for this coherent pattern detection, as suggested by Zha et al. [116].

Determining the number of principal components is one of the greatest challenges which hinders a meaningful interpretation of multivariate data [115]. To address this challenge, a scree plot is created which detailed the percent variability explained by each principal component [117]. Function 1 shows the PCA algorithm signature. The algorithm, as well as the subsequent K-means clustering and silhouette validation were implemented in Matlab by MathWorks Inc. and documented as part of the Statistics Toolbox [118].

Prototype: $S = \text{princomp}(B)$

Input: $B - m \times n$ data matrix

Output: S - The representation of B in the principal component space.

Initialize:

Metric = One minus the sample correlation between points (treated as sequences of values).

Function 1: Principle component analysis.

K-means clustering and silhouette validation

MacQueen introduced K-means clustering as a DM method based on cluster analysis [119]. It partitions n observations into k clusters, such that each observation belongs to the cluster which has the nearest mean. This results in a partitioning of the data space into Voronoi cells [120]. Algorithmically, K-means uses a two-phase iterative algorithm to minimize the sum of point-to-centroid distances, summed overall k-clusters. Ding and
He proved that the combination of PCA and K-means outperforms K-means only pattern detection \[121\]. Function 2 shows the K-means algorithm signature.

Prototype: \(l = \text{kmeans}(X, k) \)

Input:
- \(X - m \times p \) data matrix
- \(k - \) Number of clusters

Output:
- \(l - m \) dimensional label vector.

Partition the points in \(X \) into \(k \) clusters defined by the label vector \(l \).

Function 2: K-means clustering algorithm.

To interpret and validate the clustering results, the silhouette method is employed, which was first described by Rousseeuw \[122\]. The technique provides a succinct graphical representation of how well each object lies within its cluster. The performance of a clustering algorithm may be affected by the chosen value of \(k \) \[121\]. Therefore, instead of using a single predefined \(k \), a set of values was used. The segmented data are produced for 2 up to \(k_{\text{max}} \) clusters, where \(k_{\text{max}} \) is an upper limit on the number of clusters. Then the silhouette mean is calculated to determine which is the best clustering. In other words, by doing so the proper value of \(k \) is found. A higher silhouette mean indicates a better quality of the clustering result \[123\]. Function 3 details the algorithm interface.

Prototype: \(s = \text{silhouette}(X, l) \)

Input:
- \(X - m \times p \) data matrix
- \(l - m \)-dimensional label vector

Output:
- \(s - m \)-dimensional silhouette value vector

Evaluate the cluster silhouettes for \(X \), with clusters defined by \(l \).

Function 3: Silhouette cluster evaluation algorithm.

AdaBoost classifier

Kearns and Vazirani investigated whether or not it is possible to boost the prediction quality of a weak learner, even if the prediction accuracy of this learner is just slightly better than a random guess \[124\]. This sparked a number of improvements on boosting algorithms. For example, Freund and Schapire introduced the AdaBoost algorithm, which solved many of the practical shortcomings of earlier algorithms \[125\]. The AdaBoost is
a machine learning algorithm which feeds the input training set to a weak learner algorithm repeatedly \cite{126}. During these repeated calls, the algorithm maintains and updates a set of weights for the training set. Initially, all weights are equal. However, after each call, the weights are updated such that the weights of incorrectly classified examples are increased. This forces the weak learner to focus on the hard examples in the training set. In a computer aided diagnosis setting, Acharya et al. showed that the AdaBoost outperforms: decision tree, fuzzy Sugeno classifier, k-nearest neighbor, probabilistic neural network, and support vector machine \cite{127}.

The Gentle AdaBoost \cite{GAda}, which uses a tree-based weak learner, consistently produces significantly lower error rates than a single decision tree \cite{128}. Breiman called AdaBoost with trees the “best off-the-shelf classifier in the world” \cite{129}. This current research employs the \texttt{GAda} implementation from Paris \cite{130}. Function 4 shows the \texttt{GAda} interface. The multi-class prediction was performed with the standard one-vs-all strategy and Function 5 shows the corresponding interface.

Prototype: \texttt{mod = model(Xtrain, ytrain)}

Input: \texttt{Xtrain} - Training data matrix \texttt{ytrain} - Training label vector

Output: \texttt{mod} - Structure which contains the AdaBoost training information.

Initialize:

Weaklearner = Decision stump minimizing the weighted error:

\[
\sum_0 w \times |z - h(x; (th, a, b))|^2
\]

\[
\sum_0 w
\]

where \(h(x; (th, a, b)) = (a \times (x > th) + b) \in \mathbb{R}\)

Maximum number of iterations = 10000;
Number of weak learners = 45;

Function 4: Gentle AdaBoost model extraction algorithm.
Prototype: \(d = \text{predict}(Xtest, \mod) \)

Input
- \(Xtest \): Test data matrix
- \(\mod \): Structure which contains the AdaBoost training information.

Output
- \(d \): Decision result vector

Function 5: Gentle AdaBoost prediction algorithm.

Ten-fold stratified cross validation

Stratified cross validation is a technique that assesses how the results of a statistical analysis will generalize to an independent data set \([131, 132]\). This method is used to test the AdaBoost classification accuracy, because Kohavi reported that stratified cross validation performs better (has smaller bias and variance) than regular cross validation \([133]\). The algorithm starts by partitioning the labeled product data, from the market segmentation step, into 10 equally sized disjoint subsets called folds. During the partitioning, the algorithm ensures that each class (market segment) is uniformly distributed over all folds \([134]\). Each of the 10 folds is then in turn used as the test set, while the remaining 9 folds are used as the training set. Once the best set (fold) is chosen, the AdaBoost classifier is constructed from the training set, and its accuracy is evaluated on the test set. This process repeats 10 times, with a different fold used as the test set each time. The estimated true accuracy by this method is the average over the 10 folds. Function 6 shows the interface for the sampling algorithm which produces training and testing information according to the ten-fold stratified cross validation method. Function 7 provides the interface for the sampling set algorithm. This algorithm, together with the specific fold number, generates the information necessary to train and test a classifier.

Decision support

The decision support functionality of the proposed DSS is realized as two distinct algorithms. The first algorithm performs objective market segmentation. Based on this market segmentation, the second algorithm suggests a market segment for a new product,
Prototype: $[I_{\text{train}}, I_{\text{test}}] = \text{sampling}(X, \text{idx})$

Input: $X - m \times p$ data matrix

$\text{idx} - m$ dimensional label vector

Output: $I_{\text{train}} - m \times f$ training description matrix

$I_{\text{test}} - m \times f$ testing description matrix

Initialize:

Method = Balanced stratified cross validation;

Number of folds $f = 10$;

Function 6: Sampling algorithm for training and test set generation.

Prototype: $[X_{\text{train}}, y_{\text{train}}, X_{\text{test}}, y_{\text{test}}]$

$= \text{samplingset}(X, \text{idx}, I_{\text{train}}, I_{\text{test}}, i)$

Input: $X - m \times p$ data matrix

$\text{idx} - m$ dimensional label vector

$I_{\text{train}} - m \times f$ training description matrix

$I_{\text{test}} - m \times f$ testing description matrix

$i -$ Fold number

Output: $X_{\text{train}} -$ Training data matrix

$y_{\text{train}} -$ Training label vector

$X_{\text{test}} -$ Test data matrix

$y_{\text{test}} -$ Test label vector

Function 7: Samplingset algorithm for cross validation.
which is described by a set of product properties.

The pseudocode of Function 8 describes the analysis algorithm that determines the market segmentation from a given set of market data A. The algorithm normalizes A before PCA is used to transform the high dimensional data into a lower dimensional data X. The next step analyzes how well X clusters. To be specific, the loop shown in Line 4. of Function 8 analyzes 2 to $k_{\text{max}} = 16$ clusters which were generated with K-means and assessed with the silhouette tests. Line 5. of the algorithm determines the cluster-configuration with the highest silhouette area ($\text{id}x$) and this cluster-configuration will be used for the subsequent ten-fold stratified cross validation step. The loop, shown in Line 7., traverses through the 10 folds. Each of these folds is used to train and test the AdaBoost classifier. Line 7. (d) evaluates the performance of the individual folds. The accumulative mean classification accuracy of the individual folds constitutes the ten-fold cross validated classifier performance r. For the proposed DSS, this parameter provides a quality measure for the market segmentation step, which is implemented as the analysis algorithm.

The second algorithm of the proposed DSS suggests a market segment for a given set of product properties. To realize this functionality the algorithm, shown in Function 9, uses the AdaBoost classifier to determine to which cluster the test vector belongs. Line 1. of Function 9 extends the data matrix A by adding the test vector as the last row. After normalization, the first m rows of the lower dimensional matrix X are used to train the classifier. Once the classifier is trained, the last row of X is used for testing. Combining data matrix and test vector ensures consistency as well as data integrity. The result of the decision support step d can be interpreted as the specific market position of the new product.
Prototype: \([\text{idx}, r] = \text{analysis}(A)\)

Input: \(A - m \times n\) data matrix

Output: \(\text{idx}\) - \(m\) dimensional label vector

\(r\) - Test error

1. \(B = \) Standardized version of \(A\), such that the ns of \(A\) are centered to have mean 0
 and scaled to have standard deviation 1;

2. \(S = \text{princomp}(B)\);

3. \(X = S(:,1:3)\);

4. for \(k = 2, 3, \ldots, k_{\text{max}}\) do

 (a) \(l_k = \text{kmeans}(X,k)\);

 (b) \(s = \text{silhouette}(X,l_k)\);

 (c) \(ms_k = \text{mean}(s)\);

end

5. \(\text{idx} = l_{\text{max}}(ms)\);

6. \([\text{Itrain}, \text{Itest}] = \text{sampling}(X, \text{idx})\);

7. for \(i = 1, 2, \ldots, 10\) do

 (a) \([X\text{train}, y\text{train}, X\text{test}, y\text{test}] = \text{samplingset}(X, \text{idx}, \text{Itrain}, \text{Itest}, i)\);

 (b) \(\text{mod} = \text{model}(X\text{train}, y\text{train})\);

 (c) \(d = \text{predict}(X\text{test}, \text{mod})\);

 (d) \[e_i = \sum_0 d_i <> y_{test_i} \]

 where \(f\) is the dimension of \(d\) as well as \(y\text{test}\) and

 \[a <> b = \begin{cases}
 0 & \text{if } a = b \\
 1 & \text{else}
 \end{cases} \]

end

8. \(r = \text{mean}(e)\);

Function 8: Analysis algorithm to establish the data quality.
Prototype: \(d = \text{synthesis}(A, \text{idx}, \text{test}) \)

Input:
- \(A \) - \(m \times n \) data matrix
- \(\text{idx} \) - \(m \) dimensional label vector
- \(\text{test} \) - \(n \) dimensional test vector

Output:
- \(d \) - label of the estimated class

1. \(A = [A; \text{test}] \);
2. \(B = \) Standardized version of \(A \), such that the columns of \(A \) are centered to have mean 0 and scaled to have standard deviation 1;
3. \(S = \text{princomp}(B) \);
4. \(X = S(:,1:3) \);
5. \(\text{mod} = \text{model}(X(1:m,:), \text{idx}) \);
6. \(d = \text{predict}(X(m+1,:), \text{mod}) \);

Function 9: Synthesis algorithm to determine a market segment.

4.3 Market segmentation and product positioning of the automotive market

The automobile market segment is initially divided into four different segments, grouped according to vehicle type, such as passenger cars, Sport Utility Vehicles (SUV), pickup trucks and van [135]. This case study focuses on sub-dividing the passenger cars segment and subsequently positioning new products in these sub-segments.

The most significant feature of the **DSSDB Explorer** is the flexibility with which a user can analyze both market data and new design data in different scenarios. The case study illustrate how the proposed **DSS** provides decision aids to users other than just listing all the use case scenarios. Three scenarios that are likely to happen during market-driven product positioning and design for the automotive market are selected. Section 4.3.2 provides a detailed description of the scenarios and the corresponding **DSSDB Explorer** results. The next section introduces the data which underpins the use case scenarios.
Table 4.1: Properties of the three car models from the Audi brand. The car models are: (1) A4, (2) A5, (3) A8. The data is based on Ward’s Automotive group (2010).

<table>
<thead>
<tr>
<th>Brand</th>
<th>Series</th>
<th>Body</th>
<th>Doors</th>
<th>Drive</th>
<th>WB</th>
<th>Length</th>
<th>Width</th>
<th>Height</th>
<th>Weight</th>
<th>Cyl</th>
<th>CylType</th>
<th>CC</th>
<th>CID</th>
<th>Liter</th>
<th>Valves</th>
<th>Injection</th>
</tr>
</thead>
<tbody>
<tr>
<td>Audi</td>
<td>A4</td>
<td>1</td>
<td>4</td>
<td>1</td>
<td>110.6</td>
<td>185.2</td>
<td>71.9</td>
<td>56.2</td>
<td>3505</td>
<td>2</td>
<td>8</td>
<td>1984</td>
<td>121</td>
<td>2</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>Audi</td>
<td>A5</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>108.3</td>
<td>182.1</td>
<td>72.9</td>
<td>54</td>
<td>3583</td>
<td>2</td>
<td>8</td>
<td>1984</td>
<td>121</td>
<td>2</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>Audi</td>
<td>A8</td>
<td>1</td>
<td>4</td>
<td>2</td>
<td>121.1</td>
<td>199.3</td>
<td>79.8</td>
<td>57.3</td>
<td>4343</td>
<td>2</td>
<td>8</td>
<td>4163</td>
<td>254</td>
<td>4.2</td>
<td>4</td>
<td>2</td>
</tr>
</tbody>
</table>

... Continued

| Continued... | Intake | Fuel | CylControl | Bore | Stroke | Compression | Hp | RPM | MpgCity | MpgHwy | Price | LbFt | Nm | LT | UT | Transmission |
|---------------|--------|------|------------|------|--------|-------------|----------|------|---------|--------|-------|------|----|----|------------|
| ... | 1 | 0 | 0 | 82.5 | 92.8 | 9.6 | 211 | 4300 | 23 | 32275 | 258 | 350 | 1500| 4200| 10 |
| ... | 1 | 0 | 0 | 82.5 | 92.8 | 9.6 | 211 | 4300 | 22 | 36825 | 258 | 350 | 1500| 4200| 4 |
| ... | 0 | 0 | 0 | 84.5 | 93 | 12.5 | 350 | 6800 | 16 | 75375 | 325 | 441 | 3500| 3500| 5 |

4.3.1 Use case data

In the case study, Ward’s Automotive Group data \(136\) is used to demonstrate the decision making process of the proposed DSS. Table 4.1 provides example data from the Audi brand which is an excerpt from the complete data set. The table lists 31 properties of three car models. The complete data set contains all the products (car models) from the following brands: Acura, Audi, Bentley, BMW, Buick, Cadillac, Chevrolet, Chrysler, Dodge, Ford, Honda, Hyundai, Infiniti, Jaguar, Kia, Lexus, Lincoln, Maybach, Mazda, Mercedes-Benz, Mercury, Mini, Mitsubishi, Nissan, Pontiac, Porsche, Rolls-Royce, Scion, SMART, Subaru, Suzuki, Toyota, Volkswagen and Volvo.

The overall number of products in the market was: 639. The complete automobile data set was imported to a database table with 639 rows (market car model data) and 31 columns (the properties of the car models).

\(^{1}\)All the properties, but not all the car models

63
4.3.2 Use case testing

The proposed DSS accepts any subset of the market data as input. In the first scenario, this flexibility is used to analyze the influence of different product properties on the market segmentation and the subsequent product positioning. To demonstrate three main functionalities of the system three representative decision scenarios are conducted.

In the first scenario, the proposed DSS provides qualitative analysis and subdivides the testing data into distinct market segments using Function 8. In the second scenario, Function 9 performs classification on product properties of a new product in order to identify its position in the market. In the third scenario, a “what if” analysis is conducted by simulating the performance results that can be obtained with different choices of product properties, i.e., to find out how the product properties should be adjusted in order to relocate a car model to another market segment.

Scenario 1: market segmentation

The market segmentation analysis allows a user to choose a subset of the market data to examine the influence of different product properties. Figure 4.2 shows the GUI of the data selection process. To demonstrate this functionality, four data sets are selected and fed sequentially to the market segmentation algorithm, as presented in Function 8. The following list details these data sets:

- Set 1 – The full set of properties from the automotive market data are used. The data matrix A has the form $A_{639 \times 31}$, where 639 is number of car models and 31 is the number of properties. It is used as input for Functions 8 and 9.

- Set 2 – The price property is left out and all other properties are kept unchanged from Set 1 ($A_{639 \times 30}$).

- Set 3 – Lower Torque Rpm (LT), Upper Torque Rpm (UT) and Transmission properties are further removed from Set 2 ($A_{639 \times 27}$).
Set 4 – From the buyer’s perspective, many properties are either unknown or irrelevant. To model the buyer’s perspective, 10 most widely used and immediately understandable properties are chosen. These properties were: WB, Length, Width, Height, Weight, Engine Displacement (CID), Liter, Horse Power (Hp), RPM, Torque (LbFt) ($A_{639 \times 10}$).

Figure 4.3 shows the output of the market segmentation algorithm for the data in Set 4. This algorithm yields five analysis graphs and one result table. The result table contains the scenario data A, the corresponding market segmentation results that are indicated by the label vector $\text{id}x$, and an internal reference, called performance ID. The performance ID links this table with one entry in the performance table. This entry contains all the performance measures, such as the number of the clusters and the prediction accuracy value r. The PCA graph, in Figure 4.3, details the variance
distribution for the first nine principle components. In this case study, three principle components are chosen to reduce the computational time and cost while at the same time preserving at least 80% of the variance. Taking these three principle components as axis, the dimension reduced data can be represented in a three dimensional coordinate system, as shown in the second graph in the top row of Figure 4.3. The silhouette performance graph shows the silhouette mean versus the number of clusters. For data Set 4, six clusters show the highest silhouette mean. To support this important result, the last graph in the first row of Figure 4.3 depicts the silhouette plot for six clusters. In the silhouette plot, silhouette values near one mean that the observation is well placed in its cluster; silhouette values close to 0 mean that an observation might belong to some other cluster [122]. The plot in Figure 4.3 shows an average silhouette value of more than 0.8. The value indicates that the clustering is strong, most market data points are correctly classified. The clusters graph visualizes the market segmentation. It allows a human observer to inspect the individual clusters. Each of the car models in the automotive market data was mapped to one of these six clusters. Area 1 shows the result of this mapping. The clusters are labeled C0 to C5 and they contain 73, 138, 72, 62, 212, 82 car models respectively.

Apart from the silhouette analysis, the AdaBoost, with ten-fold stratified cross validation, was also used to assess the market segmentation quality. Table 4.2 lists the market segmentation accuracy results. The accuracy was established by taking the test error r, from Function 8, and calculating:

$$\text{accuracy} = (1 - r) \times 100\%$$ \hspace{1cm} (4.1)

For Set 1, with a full set of product properties, the proposed system achieved a market segment prediction accuracy of 76.4%. The prediction accuracy increased to 93.5% when the price property was removed from the input. With 27 product properties in Set 3,
Figure 4.3: GUI display of the market segmentation results for Set 4.
Table 4.2: **DSSDB Explorer** performance under various scenarios.

<table>
<thead>
<tr>
<th>Set</th>
<th>Cluster No</th>
<th>Market Segment Prediction Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>31</td>
<td>76.4%</td>
</tr>
<tr>
<td>2</td>
<td>30</td>
<td>93.5%</td>
</tr>
<tr>
<td>3</td>
<td>27</td>
<td>76.1%</td>
</tr>
<tr>
<td>4</td>
<td>10</td>
<td>92.58%</td>
</tr>
</tbody>
</table>

Figure 4.4: Market segmentation for market data Set 4.

the number of clusters was 16 and the prediction accuracy was just 76.1%. For Set 4 the **DSS** identified six market segments with a high prediction accuracy of 92.58%.

For the proposed **DSS** the mapping from car models to clusters is interpreted as market segmentation. For Set 4, the six clusters represent a subdivision of the passenger car market segment. These subdivisions were categorized as small, medium, large, executive, luxury and sports. Figure 4.4 shows the mapping between the categories and the **DSSDB Explorer** cluster labels (C0 to C5). For example, the Audi series A8 was mapped to C1, the luxury car segment; the Audi series A4 and A5 were mapped to C5, the large car segment. Table 4.2 indicates that these mapping are to 92.58% accurate.

Scenario 2: product positioning

Based on the identified market segments, the decision support step helps the user decide to which market segment a new car model belongs. Figure 4.5 shows both the process
and output of the decision support step. The table input field, shown in area ②, allows the user to input new product properties. Pressing button ① executes the synthesis Function 9. This function trains the AdaBoost algorithm with the car model data from the individual market segments. And then it predicts the label of the new input that constitutes the market position of the new product.

In this product positioning scenario, the data shown in area ② of Figure 4.5 was used as input. The decision support step classified the new input into market segment C1 with a prediction accuracy of 92.58%. The user can inspect the market segmentation results in area ③. The bottom part of the decision support GUI shows the number of properties used for clustering, clustering result, and market segment prediction accuracy.

Scenario 3: “what if” analysis

The proposed DSS provides market segment information for all products in the input data set. This crucial information helps decision makers to customize their product properties.
Function 9 identifies the market position of a new product. This functionality can be used to conduct a “what if” analysis. For example, a designer can vary the properties of a new product in such a way that it is mapped to a designated market segment. This “what if” analysis enables us to examine the sensitivity of each product property and it provides benchmarking information. This knowledge helps the designers to fine-tune their product such that it fits the targeted market segment.

To discuss the “what if” analysis, we consider a hypothetical use case scenario, where an automobile firm needs to downsize a car model to smaller exterior dimensions and more fuel efficiency due to the rising fuel cost. We assume that a decision maker wants to relocate “Series 1” of “Brand 1”, which was introduced in Scenario 2. To be specific, a manager wants to change the product from the Luxury (C1) to the Large (C5) market segment. Furthermore, we aim to make “New series 1” the most fuel efficient model in the targeted segment. A crucial question in this scenario is: How to adjust the properties such that the resulting product is mapped to a downsized market segment? To answer this question requires a sophisticated decision support process.

Figure 4.6 shows the flowchart of the “what if” analysis process. The process starts with need definition, in this case: Redesign a product, currently located in the Luxury (C1) market segment such that it fits Large (C5) market segment. The next step establishes the design requirements, based on a competitors analysis. Once the requirements are established, we start the iterative process of finding an appropriate specification. In this case, we adjust the parameters of “New series 1” until it is repositioned to the Large (C5) market segment. Table 4.3 shows a possible solution for this particular downsizing problem.

4.3.3 Discussion

Many complex decisions need to be made during the product positioning and design process [23]. A prerequisite for a large number of these decisions is the correct iden-
Table 4.3: Design parameters of a new car model for testing.

<table>
<thead>
<tr>
<th>Brand</th>
<th>Series</th>
<th>WB</th>
<th>Length</th>
<th>Width</th>
<th>Height</th>
<th>Weight</th>
<th>CID</th>
<th>Liter</th>
<th>HP</th>
<th>RPM</th>
<th>LbFt</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brand 1</td>
<td>New series 1</td>
<td>106.5</td>
<td>181.4</td>
<td>71.8</td>
<td>57.8</td>
<td>3373</td>
<td>147</td>
<td>2.5</td>
<td>200</td>
<td>5158</td>
<td>214</td>
</tr>
</tbody>
</table>

Identification of product specific market segments. This market segmentation is a difficult task, because during the design stage not all the product properties are known, and even the known properties can change during the design process. These uncertainties increase the complexity of the decision making. Therefore, we modeled the proposed DSS in a flexible way to accommodate the uncertainties. This flexibility is embodied in the fact that the user can freely choose any property combination, and the system will identify the market segments and product positioning accordingly. These different property combinations yield different market segmentations. The system indicates the market segment prediction accuracy, which reveals the quality of the individual market segmentations. For example, Table 4.2 shows the comparative performance of the DSS. The difference between Sets 1 and 2 is that Set 2 omits the price property. The dramatic increase of the market segment prediction accuracy reveals that, for this DSS, price is not a good market segment indicator. For Sets 1 to 4, the system identified different
number of clusters with different prediction accuracies. The results suggest that there is a non-linear relationship between the number of properties and the market segment prediction accuracy. But the results show an inverse relationship between amount of clusters and the market segment prediction accuracy. This last point is understandable because, decision support tools, such as the proposed DSSDB Explorer, perform better when they have to deal with fewer signal classes [137].

To make better decisions on product positioning and design, it is necessary to concurrently consider the changing customer needs and the entry or changed strategy of the competitors [13]. The proposed DSS evaluates the market segments based on available market data, as this market data changes over time, so does the objective market segmentation step in the DSSDB Explorer. This adaptive adjustment helps keep track of vital information in dynamic market places. The resulting information can benefit enterprise decision making in a number of ways [138]. First, it allows the firm to identify segments with significant opportunities. Second, through examination of different market segment results and current product portfolios, the decision makers can identify gaps in their products, thus creating a justification for developing new products. Also, the product positioning result helps the firm to strategically position their products in the targeted segments. Furthermore, the proposed DSS can be used in “what if” scenarios, where the new product properties are altered and the outcome of the market segment decision is observed. Another benefit is that the proposed DSS works even with incomplete parameters, that means all the benefits listed above can be realized early in the design phase.

A brief summary and preview is given in the next section to close this chapter.
4.4 Summary and preview

The need for complex decision making, combined with the emergence of powerful information systems, give rise to sophisticated DSSs. This chapter introduces the data-driven DSS for market segmentation and product positioning. The proposed system combines the reliability and accessibility of database entries with DM and machine learning methods. The GUI dialog system manages and coordinates the interaction between a user (a decision maker), model and data, so that the decision maker receives barrier free support to solve product positioning and design problems. The proposed system identifies market segments and provides objective decision aids for product positioning and design. Furthermore, the decision makers can use the system to model different use scenarios and conduct “what if” analysis.

By using real world market data, the proposed system works accurately in a practical setting, even when there was just subset of the design data available. Therefore, enterprise decision makers can obtain valuable decision support even in an early design phase. The proposed DSS obtained 93.5% market segment prediction accuracy, in classifying unknown product properties into one of the five market segments, with 30 out of 31 properties. This result was obtained with ten-fold stratified cross validation. The fact that the high accuracy was achieved with this strict validation method makes us confident that the proposed DSS can handle complex real world decision making situations. The proposed system identifies the market segments and suggests a specific market segment for the new product design. The enabling techniques, such as market segmentation, product positioning and “what if” analysis, ensure that the decision making processes is conducted in an objective and systematic manner. Therefore, the proposed system enables a firm to tailor new products for specific market segments.

The limitations of the proposed DSS come from the ideas of objectivity. The fundamental problem is that even digital processing machinery is not entirely objective. These
machines have been built by humans to do specific tasks, i.e. a classifier is built according to specific rules and parameters to mimic human decision making. Furthermore, these machines act on specific input data, but this data is selected according to subjective criteria. For the case study, we used automotive data from Ward’s Automotive Group, a division of Penton Media Inc. (2010) and the decision to use this data was entirely subjective. Another limitation of this work is that it did not include a way to rank the individual input parameters. For example, human experts place lots of emphasis on the price in contrast our system treats all input parameters with equal importance. The reason why this weighting feature is absent comes from the fact that data weighting is subjective and our aim was to produce a system which is as objective as possible. In other words, weighting the input data would lead to market segmentation and subsequently to decision support which is very much dependent on human experts. But this dependence would limit the usefulness of the proposed system, because these human expert decisions, which rely on weighting the input data, are not transferable between different markets. In this particular case, the proposed DSS works for any market where appropriate market data is available with a minimum of subjective human intervention. The high prediction accuracy makes us confident that the proposed DSS can provide useful information for a wide range decision makers.

This chapter shows how the data-driven method can provide objective decision support for market segmentation and product positioning. Though the proposed DSS has the aforementioned advantages, some questions remain unanswered.

- The selection of the DM techniques employed in the proposed DSS seems arbitrary, even though it turned out the prediction accuracy of the system is pretty high for this particular case study decision support problem. But is the combination of the PCA, K-means and GA algorithms the best way to form the DSS? Would an alternative DSS design yield higher prediction accuracy?
• What will be the more robust and reliable way to construct a data-driven [DSS] for market segmentation and product positioning?

The next chapter aims to shed some light on these unanswered questions, by providing an extensive investigation into the tools and methods for data-driven market segmentation and product positioning. The investigation leads to a framework which answers how to construct a robust [DSS].
Chapter 5

Data-driven decision support system design and evaluation

This chapter augments the data-driven Decision Support System (DSS) for market segmentation and product design in Chapter 4. We focus on the offline and online subsystem construction as well as testing of the proposed DSS as shown in Figure 3.2 in Section 3.2.1. Every DSS problem requires us to search a suitable algorithm structure, because different algorithms, for the same task, have different merits and shortcomings and it is impossible to know a priori which combination of algorithms gives the best results. Therefore, to select the best algorithms is empirical science where the possible combinations are tested. The offline subsystem evaluates different algorithms and selects the best processing structure for the online subsystem. The rigorous evaluation and selection process ensures reliable decision support from the DSS. Section 5.1 reviews the data-driven product family design problems. Section 5.2 introduces the tools and techniques used in the construction of the offline and online subsystems. In Section 5.3, these systems are tested and validated based on the same example as in the previous chapter. The subsequent discussion section relates the findings to the wider research on data-driven methods. Section 5.4 puts forward the summary of
the chapter.

5.1 Overview of data-driven decision support system design problems

In recent years, both scientific applications and business practices have become increasingly data-intensive [139]. In today’s competitive economy, information is central to the enterprise’s capacity to act [66]. Information, extracted from data, is a key element which enables competitive companies to design successful products for a global market [140]. But, the fundamental question is: How do we extract this information from potentially vast amounts of data? Questions like this gave rise to Data Mining (DM), which describes a collection of methods and algorithms to extract information from data. However, DM does not interpret the data, it just delivers information as a condensed form of raw data. It is up to managers to make sense of this information and to use it as a basis for decisions. This need for subjective interpretation leaves room for biased decisions which are prone to baseline errors and informal fallacies [141]. As a result, complex product development problems require decision aids, such as Decision Support Systems (DSS). A DSS aims to assist managers to make strategic decisions or predict future consequences by taking into account the actual outcomes/performance of the enterprise’s historical and current marketing data. One way of constructing such a DSS is to combine DM methods with machine learning for automated decision making.

DM is used to extract relevant information from data and machine learning uses this information to create new insights, i.e. speculate about or predict the future trends and model complex systems based on design variables [142]. One of the most critical issues in engineering design is making decisions on a sound basis in the early design stage [143]. In the product design process, a necessary design task is to make a decision among candidate designs or parametric values, after the design has been formalized [144]. Data-driven approaches are gaining popularity within the enterprise as the amount of
available data increases in tandem with market pressures. These approaches make valuable and critical decisions traceable and repeatable. Brynjolfsson et al. found that output and productivity of the firms that adopt data-driven management increased 5-6% [145]. The success of the data-driven approach relies on the quality of the gathered data, the effectiveness of data analysis and the objectiveness of results interpretation.

Most of the evaluation criteria focus on ease of use, cost and capabilities of the systems [146]. The computerized DSSs are designed to “reduce human error”. However, Skitka et al. pointed out that an unreliable support aid might have disastrous consequences for a company [147]. To overcome this problem, a reliable DSS must focus on properties, such as accuracy, ease of use, cost and capabilities of the system [146]. Therefore, the evaluation and subsequent selection of the DSS algorithms and methods is crucial for all computerized DSSs.

This chapter describes the design of a robust DSS for market segmentation and product positioning. It focuses on the systems design methodology and the algorithm evaluation. Our main contribution is that we structured the DSS into offline and online subsystems, where the offline subsystem evaluates and selects the best processing structure for the online subsystem active decision support. To show the feasibility of the proposed method, we discuss a DSS for product positioning in the automotive market. The proposed system uses DM methods to extract market segmentation information from automotive market data and machine learning algorithms use this information to determine the market segment of a new product. The offline subsystem compared (1) four intrinsic dimension estimation techniques: Eigenvalue-based Estimator (EVE), Maximum Likelihood Estimator (MLE), Correlation Dimension Estimator (CDE) and Geodesic Minimum Spanning Tree (GMST), (2) three dimension reduction techniques: Local Linear Embedding (LLE), Principle Component Analysis (PCA) and Multidimensional Scaling (MDS), and (3) three clustering techniques: cluster, Fuzzy C-Means (FCM) and K-means. These DM techniques were evaluated by measuring the cluster deviation, the silhouette mean
and the 10-fold cross validated accuracy of three automated classification algorithms: Gentle AdaBoost (GAda), Nearest Neighbor (NN) and Support Vector Machine (SVM). For the proposed DSS, the SVM delivers the highest and most consistent classification accuracy.

5.2 Design and evaluation of the decision support system

This section focuses on the construction of the offline and online subsystems. The offline subsystem evaluates the merits of both algorithms and a system structure. In this particular case, the results include the best dimension reduction algorithm, the best cluster algorithm and the training model from the best classification algorithm. These results are used in the online subsystem to determine the market segment of a new product. Figure 5.1 shows the block diagram of the proposed DSS and the information transfer from the offline to the online subsystems. The input for the offline subsystem is the high dimensional data from the data subsystem. The intrinsic dimension estimation step estimates the data dimensionality. The following dimension reduction step reduces the data to this estimated dimension. The clustering algorithms extract structural information from the new structured data set. The robust tests determine how valuable the information is for a particular problem. In the online subsystem, the best algorithms for dimension reduction, clustering and classification are used to deliver the decision support to the decision maker. The following sections detail the DM and machine learning techniques which are employed in the proposed systems.

5.2.1 Intrinsic dimensionality estimation

There is a consensus in the high dimensional data analysis community that many types of real life high dimensional data is embedded in a high-dimensional space. They can be efficiently summarized in a much lower dimension space without losing much infor-
intrinsic dimensionality of a data set X means that its elements lie within or near a manifold with dimensionality d which is embedded in the higher D-dimensional space. We denote the intrinsic dimensionality of the dataset X by d and its estimation by \hat{d}. The capacity to discriminate different classes and the generalization capability of classifiers depend on the intrinsic data dimension \[148\]. In this section, four intrinsic dimension estimation techniques are discussed.

Correlation Dimension Estimator (CDE)

The CDE is a local intrinsic dimension estimator. It is based on the assumption that the number of data points, in a hypersphere with radius r, is proportional to $r \times d$ \[149\]. This is established by computing the relative amount of data points that lie within a
A hypersphere with radius r:

$$C(r) = \frac{2}{n(n-1)} \sum_{i=1}^{n} \sum_{j=i+1}^{n} c$$

where $c = \begin{cases} 1, & \text{if } ||x_i - x_j|| \leq r \\ 0, & \text{if } ||x_i - x_j|| > r \end{cases}$ \hspace{1cm} (5.1)

The value $C(r)$ is proportional to $r \times d$, hence $C(r)$ can be used to estimate the intrinsic dimensionality d of the data. It’s value can be obtained by this estimation:

$$\hat{d} = \frac{\log(C(r_2) - C(r_1))}{\log(r_2 - r_1)}$$ \hspace{1cm} (5.2)

Eigenvalue-Based Estimator (EVE)

The EVE is a global estimator which considers the data as a whole while estimating the intrinsic dimensionality. It explores the structure of a high-dimensional data set by projecting the observations onto the first principle components, and evaluates the eigenvalues which measure the amount of information explained by the principle components \cite{150}. After normalization, the eigenvalues can be plotted in order to estimate the data dimensionality. The estimation of the intrinsic dimensionality d is obtained by counting the number of normalized eigenvalues that is higher than a chosen threshold value ϵ.

Maximum Likelihood Estimator (MLE)

The MLE estimates the number of data points covered by a hypersphere with a growing radius r \cite{151}. In contrast to the CDE, the MLE performs this task by modeling the number of data points inside the hypersphere as a Poisson process. The Poisson process rate $\lambda(t)$, at intrinsic dimensionality d, is expressed as:

$$\lambda(t) = \frac{f(x) \pi^{d/2} d t^{d-1}}{\Gamma(d/2 + 1)}$$ \hspace{1cm} (5.3)
where \(f(x)\) is the sampling density and \(\Gamma(.)\) is the gamma function. Based on the Poisson process, it can be shown that the MLE of the intrinsic dimensionality \(d\), around a datapoint \(x_i\) with \(k\) nearest neighbors, is given by:

\[
\hat{d}_k(x_i) = \left(\frac{1}{k-1} \sum_{j=1}^{k-1} \log \frac{T_k(x_i)}{T_j(x_i)} \right)^{-1}
\]

(5.4)

where \(T_k(x_i)\) represents the radius of the smallest hypersphere with center \(x_i\) that covers \(k\) neighboring data points [151].

Geodesic Minimum Spanning Tree (GMST) estimator

The GMST estimator provides a statistically consistent estimate of the intrinsic entropy and dimension of a data set. The growth rate of the length function of a GMST is strongly dependent on the intrinsic dimensionality \(d\) [152]. The length function is defined as the sum of the Euclidean distances that correspond to all edges in the geodesic minimum spanning tree.

The GMST estimator constructs a neighborhood graph \(G\) on the dataset \(X\), where every data point \(x_i\) is linked with its \(k\) nearest neighbors \(x_{ij}\). \(T\) is defined as the minimal graph over \(X\), which has length:

\[
L(X) = \min_{T \in \tau} \sum_{e \in T} g_e
\]

(5.5)

where \(\tau\) is the set of all subtrees of graph \(G\), \(e\) is an edge in tree \(T\), and \(g_e\) is the Euclidean distance corresponding to \(e\). In the GMST estimator, a number of subsets \(A \subset X\) of the dataset \(X\) are constructed with various sizes \(m\), and the lengths \(L(A)\) of \(A\) are computed. Theoretically, the ratio \(\frac{\log L(A)}{\log m}\) is linear, therefore it can be evaluated with \(y = ax + b\). The variables \(a\) and \(b\) are calculated with the least squares method. The intrinsic dimensionality is then provided by the estimated value of \(a\) through \(\hat{d} = \frac{1}{1-a}\).
5.2.2 Dimensionality reduction

In DM applications, high dimensional data are often transformed into lower dimensional subspaces where coherent patterns can be detected more clearly \[115\]. A dimensionality reduction technique transforms the original dataset \(X\) into a new dataset \(Y\) with dimensionality \(d\), while retaining the geometry of the data as much as possible \[153\]. Three dimension reduction methods are introduced in this section.

Principal Components Analysis (PCA)

As first introduced in Section 4.2.2, PCA is a popular method which constructs a low-dimensional representation that describes the data variance \[154\]. The PCA algorithm establishes a linear transformation \(T\) that maximizes \(T^\tau \text{cov}_{X-\bar{X}}T\), where \(\text{cov}_{X-\bar{X}}\) is the covariance matrix of the zero mean data matrix \(X\). This linear projection is formed by the \(d\) principal eigenvectors, known as principal components, of the covariance matrix of the matrix \(X\). Hence, PCA solves the following eigenproblem:

\[
\text{cov}_{X-\bar{X}} \, v = \lambda v \quad (5.6)
\]

The eigenproblem is solved for the \(d\) principal eigenvalues \(\lambda\). The corresponding eigenvectors form the columns of matrix \(T\). The low-dimensional data representations \(y_i\) of the data points \(x_i\) are computed by projecting them onto the linear basis \(T\), i.e., \(Y = (X - \bar{X})T\).

Multidimensional Scaling (MDS)

MDS methods are projection techniques that tend to retain the pairwise distances among data as much as possible \[155\]. The quality of the projection is expressed in a stress function, which depends only on the distances between data \[156\]. The stress function
is defined by:

\[\varphi(Y) = \sum_{ij} (||x_i - x_j|| - ||y_i - y_j||)^2 \]

(5.7)

where \(||x_i - x_j|| \) is the Euclidean distance between the high-dimensional data points \(x_i \) and \(x_j \) and \(||y_i - y_j|| \) is the Euclidean distance between the low-dimensional data points \(y_i \) and \(y_j \).

Local Linear Embedding (LLE)

LLE is a local nonlinear dimensionality reduction technique which attempts to preserve local properties of the data [157]. The preservation of local properties allows LLE to generate highly nonlinear embeddings. LLE constructs a neighborhood preserving by writing the data point as a linear combination of the reconstruction weights \(W_i \) of its \(k \) nearest neighbors \(x_{ij} \). This is done by choosing \(d \)-dimensional \(y_i \) to minimize the embedding cost function \(Y \):

\[\varphi(Y) = \sum_{\langle i \rangle} \left(y_i - \sum_{j=1}^{k} w_{ij} y_{ij} \right)^2 \]

(5.8)

The coordinates of the low-dimensional representations \(y_i \) is found by computing the eigenvectors corresponding to the smallest \(d \) non-zero eigenvalues of the inner product of \((I - W) \), where \(I \) is the \(d \times d \) identity matrix.

5.2.3 Clustering

Clustering is a common technique for statistical data analysis that forms the basis of many classification and system modeling algorithms [158]. As one of the steps in exploratory data analysis, clustering identifies a collection of patterns to clusters based on similarity. The K-means is introduced in Section 4.2.2. The following parts detail two other clustering algorithms.
Fuzzy C-Means (FCM)

FCM is similar to the K-means clustering method, but it uses fuzzy partitioning of data that is associated with different membership values between 0 and 1 [159]. It is an iterative algorithm which is based on minimizing the differences to an objective function that represents the distance from any given data point to a centroid weighted by that data point’s membership grade [160]. Fuzzy clustering algorithms can handle mixed data types. In the product design area, fuzzy clustering approaches make use of ill-defined relationships between to product design features and, based on this insight, provide more useful solutions [15].

Hierarchical Clustering (Cluster)

A hierarchical clustering algorithm produces a dendrogram representing the nested grouping of patterns and similarity levels at which groupings change [161]. Hierarchical algorithms are very versatile, that allows users to decide the level or scale of clustering that is most appropriate for a specific application.

5.2.4 Performance evaluation

The discovered patterns should be valid on new data with some degree of certainty [158]. In this section, the quantitative measures for evaluating the performance of the chosen DM and machine learning algorithms are discussed. The introduction for silhouette mean, GA data and stratified cross validation can be found in Section 4.2.2, 4.2.2, and 4.2.2 respectively.

Statistical tests

The statistical tests is conducted to allow comparisons with existing results from other studies. Instead of using mean, the analysis is based on the more robust Median (M).
and the well known Standard Deviation (σ).

\[
M = \begin{cases}
\frac{(N+1)}{2} & \text{if } N \text{ is odd} \\
\frac{N}{2} + \frac{(N+1)}{2} & \text{if } N \text{ is even}
\end{cases}
\]

(5.9)

\[
\sigma = \sqrt{\frac{1}{N} \sum_{i=1}^{N} (x_i - \mu)^2}, \text{ where } \mu = \frac{1}{N} \sum_{i=1}^{N} x_i
\]

where \(x_i\) is the number of elements in a cluster, \(N\) is the number of clusters and the \(i\)th term indicates the value \(x_i\) when the cluster size is sequentially ordered.

Nearst Neighbor (NN)

The NN decision rule assigns to an unclassified sample point the class of the nearest of a set of previously classified points [162]. The prototype based learning algorithm provides a simple and intuitive model while promising generalization performance in pattern classification tasks [163].

Support Vector Machine (SVM)

SVM is a popular learning algorithm, which was introduced by Vapnic et al. [164] and successively extended by a number of other researchers [165]. The SVM shows a remarkably robust performance when confronted with sparse and noisy data. This makes it the system of choice for a number of different applications, from text recognition and categorization to disease classification [166].

The SVM algorithm separates a given set of binary training data with a hyperplane. This plane separates the two clusters with a maximum distance. For cases in which a linear separation is not possible, a kernel technique can be used [167]. This technique automatically realizes a nonlinear mapping to a feature space. The hyperplane, found in this feature space, corresponds to a nonlinear decision boundary.
5.3 A robust decision support system for market segmentation and product positioning

This section tests and verifies the proposed DSS design method. To have the direct comparison to results of the DSS in Chapter 4, the same automotive market data is used. The structure of the DSS system follows the block diagram shown in Figure 5.1. The offline subsystem performs intrinsic dimensionality estimation, dimension reduction, clustering and classification tests on automobile market data. The statistical tests and silhouette mean are used to evaluate how appropriately the data has been clustered, then 10-fold stratified cross validation is employed to measure the classification accuracy. The combination of the selected algorithms that optimize the evaluation criteria are chosen for the online subsystem to form automobile market segments and to identify the position of a new car model. The selected algorithms are introduced in the previous sections. The next section discusses statistical and silhouette mean results as well as the prediction accuracy values of the three tested classifiers.

5.3.1 An example: automobile market segmentation

Ward’s Automotive Group data is used to demonstrate the decision making process of the proposed DSS [136]. The example data can be seen in Section 4.3.1. For this particular case, the full set of properties from the automotive market data are used. The data is same as Set 1 in Section 4.3.2.

Table 5.1 shows the intrinsic dimension estimation results. With a dimensionality of 2, the CDE estimated the lowest intrinsic dimensionality. The local MLE and the global GMST estimators agree on an intrinsic dimensionality of 3. The EVE provides the highest estimate.

Table 5.2 details both clustering and performance evaluation results. The first two columns detail the methods used for clustering and dimension reduction. Column 3
indicates the intrinsic dimensionality, the numbers are linked to the results shown in Table 5.1. The last column of the clustering part indicates the number of clusters found by the individual clustering algorithms. The first two columns, of the performance evaluation part, state M and σ of the clusters. The following silhouette mean column provides a statistical indication of the cluster performance (0 worst, 1 best). The last three columns of the Table 5.1 provide the 10-fold stratified cross validated accuracy results for the three tested classifiers. For example, the first result row in Table 5.2 indicates that, with a PCA based dimensionality reduction from 31 to 2 (CDE), the K-means algorithm partitions the data into 2 clusters. Comparing these clusters results in $M = 24.5$ and $\sigma = 152.45$. With 0.67 the silhouette mean is high. Therefore, the low accuracy score for GAda of 25.24% is unexpected. With 99.68% vs. 98.25% the SVM outperforms the NN.

Figure 5.2 shows mean and standard deviation of the classification accuracy over all analyzed data, i.e. across the respective column in Table 5.2.
Table 5.2: Clustering and performance evaluation results.

<table>
<thead>
<tr>
<th>Clustering</th>
<th>Performance evaluation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Algorithm</td>
<td>Dimension Reduction</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>K-means</td>
<td>PCA</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>MDS</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>LLE</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>PCA</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>MDS</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>LLE</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>FCM</td>
<td>PCA</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>MDS</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Cluster</td>
<td>PCA</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
5.3.2 Lessons learned

The block diagram in Figure 5.1 gives a blueprint on how to construct the offline and online subsystems for a DSS. Initially there is the fundamental split between offline and online subsystems. The construction of the offline subsystem is more challenging, because there is no a priori knowledge on what algorithms to use. This lack of knowledge forces us to conduct empirical science by trying out different algorithms and measuring their performance. Therefore, it is important to get an overview of the existing algorithms in the respective fields. From an application development point of view it is not feasible to implement new algorithms, these algorithms have to come from libraries and other prior implementations. Therefore, the Matlab eco-system is a good starting point for finding these algorithm implementations. The subsequent step is crucial: testing these algorithms. The testing should involve at least two different methods, namely a statistical method and a classification method. The statistical method ensures that the results are believable and they show whether or not the investigator is on the right track.

DM algorithms are used to extract market segmentation information from automotive market data and subsequently machine learning algorithms are used for online decision support of a new car model positioning. In this particular setup, the market data dimensionality is too high, therefore the first processing step in the offline subsystem is the intrinsic dimensionality reduction. Four different estimation methods give three different results. The diversity of these results indicates that there is no single objective method which delivers the correct solution to problems encountered in the construction of a DSS. Similarly, the three different methods, in the subsequent dimension reduction step, lead also to different results. The dimension reduction step changes the meaning of the individual parameters, i.e. after dimension reduction the parameters have no direct relationship to physical properties, such as Length and Width. Therefore, the subsequent clustering and classification steps have to extract meaning from this reduced set of parameters. As before, there are different clustering algorithms in existence and for this
work three of them are tested. As expected, different clustering algorithms give different results.

For this case study, the result of the clustering algorithms is interpreted as market segmentation information. In other words, this clustering function maps individual car models to different market segments. As part of the offline subsystem, 36 different clustering results are observed, each of which are obtained with a different algorithm configuration. The last step in the offline subsystem is concerned with the task of finding the best algorithm combination. This step is crucial, therefore the vigorous evaluations are conducted on the clustering information in terms of M and σ, silhouette mean and the 10-fold stratified cross validated accuracy of three different classification algorithms. M and σ are straightforward statistical methods to compare the clustering results. A M close to the mean and a low standard deviation indicate clusters of similar size. For example, with $\sigma = 61.99$, K-means clustering on a PCA reduced 10 dimensional dataset achieved the lowest standard-deviation, i.e. the cluster size is similar. The high silhouette of 0.95 mean is obtained with the cluster algorithm acting on LLE reduced data. However, these statistical methods do not correlate well with the classification results.

Using classification algorithms to evaluate the performance of the market segmentation has a dual purpose. The 10-fold stratified cross validation test is the best practical test, because it is specifically targeted to the problem of finding the market segment for a new product from its properties. The most accurate classification algorithm will serve in the online subsystem to provide decision support. There is a number of clustering strategies which leads to high and highest classification accuracy. Therefore, the clustering method can be selected according to secondary considerations, such as the number of clusters and the cluster homogeneity. For example, if chose silhouette mean and prediction accuracy as performance criteria, the following combination should be chosen for the online subsystem to provide decision support: MLE or GMST for intrinsic dimension estimation which gives 3 dimension estimation, the LLE for dimension reduction, the
Cluster for clustering and SVM for classification. This combination yields the highest silhouette mean of 0.98 and highest prediction accuracy of 100% as shown in Table 5.2.

As shown in Figure 5.2, with the lowest mean of 71.38% and highest variance of 32.58%, the GA classifier performs worst among three. On the contrary, for this particular case data used, it is found out that the SVM algorithm scores consistently well. Figure 5.2 indicates that, on average, it outperforms NN and GA with the highest mean of 99.19% and smallest variance 1.63%. Therefore, the online subsystem features the SVM algorithm for decision support.

Looking back to the results from table 4.2 in Section 4.3.2, both the silhouette mean of 0.40 and prediction accuracy of 76.4% of the previous DSS are quite low. Which means that the combination of the PCA, K-means, and GA isn’t a good choice for this particular data set. This result is consistent with the result in Table 5.2. However, as discussed in Section 4.3.2 when the dimension of the chosen data set varies, both the clustering results and DSS performances vary dramatically. With the full set of design parameters (31 parameters), Table 5.2 shows that the majority of the chosen methods yield clustering results of two, and a few methods yield clustering results of three, ten and eleven. Based on these objective results, a decision maker might raise a question: “How can two clusters of these 639 cars be helpful?” There are merits in asking how helpful an objective measure is. A question like “what if we chose more representative design parameters in the data set?” can be formulated and incorporated in the DSS. As we discussed in Section 4.3.3 in the “what if” scenarios where different design parameter are chosen, the DSS will yield different market segmentation and product positioning results. Through examination of different results and current product portfolios, the decision makers can create a justification for developing new products. If a particular objective measure is not helpful, we have to look for different or more suitable objective measures to increase their relevance. In general, it is not a good idea to dismiss an objective measure, because it fails a subjective test. Failing that test is a motivation
5.4 Summary and preview

This chapter delivers a blueprint on how to construct offline and online subsystems of a DSS for market segmentation and product positioning. The offline system uses DM techniques to extract useful information from the available data. In general, it is difficult to know a priori what are the best algorithms for information extraction, because of the fuzzy relationship between data and clusters. Therefore, empirical science is needed to find the best combination from an available set of algorithms. The online subsystem delivers active decisions that can help during the decision making process. To demonstrate the empirical process is demonstrated based on data from the US automotive market, which leads to the selection of the best processing structure with the most suitable algorithms. Four intrinsic dimensionality estimation algorithms are used on the data. These algorithms provided three different estimates (2, 3, 10) which are used in the dimensionality reduction step. To be specific, three different dimension reduction algorithms are employed to compress the original data into the prior evaluated dimensions. The resulting nine datasets are fed into three different clustering algorithms. The results of these clustering algorithms are analyzed with statistical methods, silhouette mean and three classification algorithms. The main finding of the analysis step is that the SVM classification algorithm outperforms both NN and GA. Therefore, the SVM classifier is best matched for this type of data, hence it should be used in the online subsystem.

The analysis results show that empirical science is necessary to find the best combination of algorithms for the problem at hand. Furthermore, there is even some leverage to adjust specific parameters and conduct a ‘What if’ analysis as shown in Scenario 3 in Section 4.3.2. The most important point is to assess the algorithm combination quality with different test methods, such as statistical evaluation and classification tests. These
test results have to guide the empirical process to select the most suitable algorithms.

After the intense study of algorithm structures and outlining the merits of offline and online systems, we are in a position to answer the questions posed in Section 4.3.3:

- Is the combination of the PCA, K-means and GA algorithms the best way to form the DSS? Would an alternative DSS design yield higher prediction accuracy? It turns out that the arbitrary selection in the previous DSS is not a wise choice. The GA prediction accuracy is pretty disappointing, as discussed in Section 5.3.2. Thus, the poor accuracy of the randomly chosen algorithm validates the main point of this chapter: rigorous testing should be conducted in the offline subsystem, and only the best algorithms are chosen for the online subsystem to provide reliable decision support.

- What will be the more robust and reliable way to construct a data-driven DSS for market segmentation and product positioning? As shown in Figure 3.2, the proposed method partitioned the DSS into four subsystems. Each of these subsystems has its own functions and is realized using different tools and techniques. The data subsystem provides efficient data storage and easy retrieval for large volumes and high dimensional data. It serves as a basis for the DSS. The offline subsystem employs vigorous evaluation methods to find the best combination of DM and machine learning algorithms. Only the algorithm combination that yields the highest classification accuracy is used in the online subsystem to provide reliable decision support through a user friendly Graphical User Interface (GUI).

With the focus on data-driven market segmentation and product positioning methods, Chapters 4 and 5 illustrated how to construct a robust DSS, along with a review and comparison of the most commonly used DM and machine learning techniques. Chapters 6 and 7 move one step forwards using Additive Manufacturing (AM) technologies and providing improved customization for product family designs.
Chapter 6

Product family design for additive manufacturing

This chapter presents an Additive Manufacturing (AM) process model for product family design. As discussed in Section 2.4, AM is projected to have a profound impact on the mass customization of consumer products. In order to take advantage of this manufacturing resource, new design methods have to be established. The need is addressed by proposing an AM centered process model for product family design. The proposed model reflects the ability of AM to produce arbitrarily complex structures with virtually no tooling effort, and it makes these powerful properties available to practitioners working in the field of product family design. By utilizing AM, all constraints, which arise in conventional product family designs, from finding a compromise between commonality and product performance are eliminated.

This chapter is organized as follows: Section 6.1 presents a brief review on the influences of AM on product family design. Section 6.2 introduces the methods which are used to realize the proposed process model. Section 6.3 introduces a case study to test the proposed model. Section 6.4 summarizes the virtues of AM for product family design.
Overview of influences of additive manufacturing to product family design

Competition in the global market place lead to the advancement of platform-based product families during the early 1980s. The product family paradigm introduces product proliferation while taking advantage of mass production efficiency [7]. Many companies invest in product family development practices so that they can provide sufficient variety to the market while maintaining the economies of scale and scope within their manufacturing capabilities [8]. Conventional product family optimization focuses on exploiting the commonality between individual products [15]. The fundamental assumption is that common components are less cost intensive than distinctive ones [168]. Hence, a prerequisite to harvest the benefits of product family design is process planning, with a special focus on keeping the production process as stable as possible [169]. In accordance with the diversity required by customized products, process family planning involves large data volumes pertaining to both the product family and the process family to be planned [170]. In addition, process family planning requires complex considerations which take into account marketing information and manufacturing restrictions, such as limited resources existing on shop floors [171]. Thus, a fundamental issue in process family planning is the modeling of production processes [92].

A production process describes routings, operations and manufacturing resources (e.g., machines, tools, fixtures and jigs) that are adopted to materialize a design [172]. From the production process perspective, Additive Manufacturing (AM) is a manufacturing resource that produces shaped parts by gradual creation or addition of solid material. This is fundamentally different from traditional forming and material removal manufacturing techniques [173]. The main benefit of AM is the ability to manufacture parts of virtually any geometric complexity without the need for tooling [174]. The Economist predicts that these beneficial properties have a profound impact on the way manufac-
turing businesses operate and indeed on how they generate revenue [113]. For product family design, AM is used to add value by customizing selected features [80]. Hague et al. [88] predicted that AM will have a profound influence on the product family production process. Hence, AM requires new design concepts and models [174, 176]. These concepts should exploit the flexibilities offered by the AM in an optimal way [177]. To achieve customization through AM requires that we update or indeed upgrade the design methods in such a way that a practitioner can translate these flexibilities into tangible advantages in the global market place.

This chapter addresses the need to model AM as part of a product family design process. It’s recognized that the unique properties of AM will fundamentally alter considerations about commonality, customization and ultimately profitability. This chapter highlights the opportunities for AM based product family design to operate in a much broader design space that is free from constraints which arise in conventional product family designs from finding a compromise between commonality and performance. To translate the benefits of AM into customization and cost reduction, a novel product family design model is proposed. The model allows practitioners to evaluate the performance of an infinite number of product designs and select the most suitable ones. To be specific, topology optimization and Finite Element Analysis (FEA) are used to generate a performance graph for individual component groups. The performance graph is combined with the result of a cost model. Therefore, the manufacturing cost is related to the product performance. Having such a clear relationship opens up a fair competition between individual component realizations and the most suitable product family design can be selected. To verify the proposed model, a case study was conducted and the customized product family designs were fabricated with Fused Deposition Modeling (FDM). The results of the case study confirm the fitnesses of the proposed model.
6.2 An additive manufacturing process model for product family design

This section introduces the AM process model for product family design, along with a formulation for a scalable product family design problem. AM is used for mechanical part fabrication. Figure 6.1 shows a block diagram of the proposed model. The model starts with the designer defining the primary requirements and constraints that will define the product family. In the second step, topology optimization is used to generate optimal individual designs to best achieve the design requirements. In a subsequent step, the performance and the cost measures are investigated. FEA is employed to verify the fulfillment of the performance requirements. The AM cost analysis allows us to identify potential commonalities in order to reduce the product family development cost further. If the requirement check is failed, the design process goes back to the first step. Once the requirements are fully fulfilled and the cost is further reduced, a customized product family is accomplished. AM is used to realize the customized designs and mechanical verification is carried out. The test results are compared with FEA simulation results.

6.2.1 Product family design

The proposed model incorporates AM technologies into the design of a scalable product family. The idea of the scalable product family is that the platform is adjustable by changing values of dimensions or other parameters to adjust the sizes of components in the platform. This is in contrast to modular product families or platforms where modules are swapped in order to generate variety.

The processes basis is the identification of the product family design and Design for Additive Manufacturing (DFAM) requirements and constraints, which have to be met to fulfill the product functionalities. The requirements also represent the objectives needed for the definition of the topology optimization process.
Figure 6.1: Block diagram of the proposed AM process model for product family design.
6.2.2 Topology optimization

Topology optimization has matured to be a practical design tool. After several years of success in the automotive industry, topology optimization has been introduced in other industries, such as Bioengineering [178], with great success. Design processes for consumer and production goods benefit greatly from the use of topology optimization. The benefit is even greater when these products have to meet tight specifications. For example, the aircraft industry uses topology optimization, because it has to deliver flying machines that are safe, reliable and cost effective (light) [179].

Topology optimization solves material distribution problems by generating optimal topologies, for a given set of requirements. Topology optimization algorithms distribute finite elements of material within a predefined space, so that boundary conditions, posed by loads and supports, are satisfied [180]. In most cases, each finite element, within the design domain, is defined as a variable [181]. These design variables model a variation in density within the design domain. In general, these variables have values in the range from 0 to 1, where 0 indicates void and 1 indicates solid [182].

The topology optimization is performed individually for all variants in a product family. Mathematically, the family design problem with \(q \) products can be formulated as follows:

\[
\begin{align*}
\min_{\mathbf{p}_i} c(\mathbf{p}_i) &= \sum_{c=1}^{N} (p_{i,c})^\alpha \mathbf{u}^T K \mathbf{u} \\
\text{s.t.} \quad & v(\mathbf{p}_i)/v_0 = m, \\
& K \mathbf{u} = \mathbf{f}, \\
& 0 < \mathbf{p}_{\text{min}} \leq \mathbf{p} \leq 1.
\end{align*}
\]

(6.1)

where \(c \) is the compliance function, \(\mathbf{u} \) and \(\mathbf{f} \) are the global displacement and force vectors, respectively, \(K \) is the global stiffness matrix, \(\mathbf{p} \) is the vector of design variables, \(\mathbf{p}_{\text{min}} \) is a vector of minimum relative densities (non-zero to avoid singularity), \(N \) is the number of elements used to discretize the design domain, \(\alpha \) is the penalization power, \(v(\mathbf{p}) \) and \(v_0 \) are the material volume and design domain volume, respectively and \(m \) is the prescribed...
volume fraction.

In this chapter, the Solid Isotropic Material with Penalization (SIMP) optimization method is used which was originally proposed by Bendsøe [183]. The compact Matlab implementation of the topology optimization is done in 99 lines Matlab code [184]. The topology optimization algorithm yields a matrix O for each of the different load requirements. The matrix entries define the amount of material at a specific element location. For example, $o_{80,10} = 0.5$ indicates that the element at location $x = 80$ and $y = 10$ has 50% material. The optimization algorithm stops when the change in material is less than a prescribed tolerance, for example 0.01%.

For the purpose of this particular case, a 2D problem is formulated and solved. Commercial software, such as Altair OptiStruct®, can perform topology optimization in 3D. The topology optimization step produces 2D matrices that represent a slice of the 3D component. The 2D to 3D conversion step extrapolates these slices to form 3D objects. This extrapolation is done with a Matlab routine which stacks N slices on top of each other. The resulting stl files are input to a FEA program and an AM file definition program.

6.2.3 Finite element analysis and cost analysis

This section investigates both mechanical performance and cost of the components. These two measures are often used to assess the product family design. In our work, we measured deflection in the direction of the force, because many component applications have limitations in the amount of deflection they can tolerate. If the chosen design does not meet the deflection requirements an iterative redesign process takes place.

In order to quantify the performance measure, the generated structures will be split into finite elements. The FEA starts with volume meshing. We used Gmsh to establish the interior volume of the component [185]. Calculix was used to define the boundary conditions and it was used for FEA solving as well as result analysis [186, 187].
The product manufacturing time and cost are measures of resource consumption associated with each variant in the product family. The cost \(C \) can be broken down into machine purchase \(P \), machine operation \(O \), material \(M \) and labour \(L \) costs, as is expressed with the following formula:

\[C = P + O + M + L \]

(6.2)

We assume that the labor cost for both build preparation and post-processing is approximately the same for all variants in a product family. Therefore, the major cost components are the first three terms in Equation 6.2.

The material cost \(M \) is expressed as:

\[M = C_{\text{material}} \times Q_{\text{material}} \]

(6.3)

where \(C_{\text{material}} \) is material cost per kg, \(Q_{\text{material}} \) is the total mass of the material used.

The operation cost per part, \(O \), is defined as the cost of running the machine during the build time, which is a function of utility costs and overhead:

\[O = T_B \times C_o \]

(6.4)

where \(C_o \) is the operation cost rate. The time required to fabricate the parts, \(T_B \), is an important factor which influences the operation cost. For the FDM process, the manufacturing time per build can be expressed as the sum of pre-processing time and printing time. The total manufacturing time \(T_B \) is calculated as:

\[T_B = t_{\text{setup}} + t_{\text{preheat}} + \sum_{i=1}^{n} t_i \]

(6.5)

where \(t_{\text{setup}} \) is the machine setup time, \(t_{\text{preheat}} \) is the preheat time, \(t_i \) is the time to build
the i^{th} layer, n is the total number of layers used to build the parts.

The values of t_{setup} and t_{preheat} depend on the machine preparation time of a specific AM printer. Hence, these time measures are largely independent of the particular component design. Therefore, n and t_i are the two main contributing factors for the difference in manufacturing time across variants in the product family.

After the deflection and the cost analysis for all the q products in the product family, we interpolate these results to deflection graph and cost graph respectively such that they represent the deflection and the cost in the entire design space. The interpolated graphs are combined in a three dimensional space. This combination opens up a fair competition between individual component realizations and the most suitable product family design can be selected.

6.2.4 Customized product family

Based on the FEA performance graph, the designers can choose the individual designs that fulfill the specific design requirements. The cost graph helps identify potential commonalities that we can exploit in order to reduce the product family development cost further. The final designs will be chosen based on three criteria: (1) meet the design requirements, (2) comply with the DFAM rules, (3) achieve maximum customization without rising manufacturing cost.

The next section introduces the case study to illustrate the proposed AM process model for product family design.

6.3 Designing a family of cantilever beams

Section 6.2 introduced a model that helps practitioners to realize the topology optimized product family design directly via AM. To evaluate this model, a scalable product family design problem is formulated and subsequently solved with the AM process model. FDM
is used to fabricate the physical parts. Once the parts are successfully manufactured, their mechanical properties are tested. The property investigated in this work is tensile strength. The testing results are compared with the FEA results.

6.3.1 Product family optimization

The product family consists of ten components. These components take the form of $v_0 = 100 \times 20 \times 20 \text{ mm}^3$ cantilever beams. All beams are fixed at one end, and a static load is applied at the opposite end. Figure 6.2 shows both boundary and load conditions. According to the product family design requirements and constraints, these 10 cantilever beams need be designed such that each beam has 10%, 20%, ..., 100% material respectively. The objective is to minimize the compliance while withstanding different static loads that are 1 N, 2 N, ..., 10 N separately. The compliance optimization problem of the family of cantilever beams can be expressed as:

$$\min_{p_i} \ c(p_i) = \sum_{c=1}^{N} (p_{i,c})^{\alpha} \ u^T K_u \ u \ \text{for } i = 1, \ldots, 10$$

s.t. $v(p_i)/v_0 = m$, for $m \times 100\% = 10\%, 20\%, \ldots, 100\%$

$$K_u = f, \ \text{for } |f| = 1 \text{ N, 2 N,} \ldots, 10 \text{ N}$$

$$0 < p_{\min} \leq p \leq 1.$$ \hspace{1cm} (6.6)

As discussed in Section 6.2, topology optimization is used to produce optimized structures for 10%, 20%, ..., 100% material. The optimization problem defined in Equation 6.6 was solved using the standard optimality criteria method [181].

Figure 6.3 shows the result of the optimization step. An approximately linear graph can be observed which relates the ten samples to the amount of material used. The five objects, above the graph, indicate the results of the topology optimization step for 20%, 40%, 60%, 80% and 100% material separately. As part of the case study, ten different beams with different amounts of material are simulated. As for the graph in Figure 6.3, these beams are mere samples, indicated by black dots, on the linear graph.
Figure 6.2: Boundary and load (10 N) condition for cantilever beam 6 with 60% material.

Figure 6.3: Module dependent material use.
6.3.2 Finite element analysis and performance surfaces

The FEA step analyzes both deflection and stress for each beam with static loads of 1 N, 2 N, ..., 10 N. The results constituted 100 (number of structures × number of load scenarios) samples in 3-dimensional deflection and stress spaces. In an interpolation step, we connected these samples and thereby we created performance surfaces. These performance surfaces have an infinite number of points, therefore it is possible to assess an infinite number of components. Within this infinite pool of possible components, there is one component which meets the design requirements, in terms of deflection and stress. Hence, the designers can select an optimal component design based on a prescribed set of performance criteria.

Figure 6.4 shows the deflection performance surface. The intersection between two black lines indicates a sample point. For example, through FEA we found that Beam 1 (10% v₀) shows a maximum deflection of 0.025 mm and Beam 10 (100% v₀) shows a deflection of just 0.01 mm. The surface facets of the deflection performance surface are interpolated. To be specific, they describe an operation which maps a beam, with any amount of material which is subjected to a load scenario from 1 N to 10 N, to a specific deflection. This straightforward interpolation was possible, because the performance surface is well behaved, i.e. it behaves according to expectations. For example, the beam with only 10% material has the highest deflection and a full beam shows the least deflection. There is a linear relationship between deflection and load for all the beams. The relationship between different beams (with different amounts of material) having the same load can be approximated by an exponential decay function.

Figure 6.5 shows the stress performance surface. This performance surface is not well behaved, because, contrary to our expectation, the stress in the material does not depend on the amount of material used to construct the beam. The beam with 90% material shows the second highest stress levels for all the load conditions. Furthermore, the beam with 40% material shows higher stress levels than the beam with 30% material. Upon
inspection of the FEA simulation results, we found that these unexpected stress levels were caused by stress concentrating corners in the material.

These results show that, with a limited number of components and a limited number of load scenarios, it is possible to open up performance surfaces. These performance surfaces can help evaluate the suitability of a particular component configuration. For the case study, the designers could find out whether or not a particular beam with a specific weight can fulfill the deflection requirements. However, by analyzing the stress performance surface we also discovered the limits of the proposed model. Badly behaved
performance surfaces, such as the stress performance surface, can only be a rough guide to designers. The case study showed that the correlation between stress concentrating corners and component shape appears to be chaotic. That means, the graph does not give any indication on whether or not a cantilever beam with 89% material will also show stress concentrating corners. A direct consequence of this, assumed, chaotic relationship between component shape and stress concentrating corners is the fact that no amount of sampling will bring out the correct performance surface. In other words, a designer needs to run the FEA simulation for each particular component shape to find accurate stress levels.

6.3.3 Cost analysis

The AM cost analysis focuses on the relative cost between product variants. The machine purchase cost was not taken into account. Hence, machine operation and material costs played a major role for the overall FDM production cost. The Polylactic Acid (PLA) price was 300$ per kg. From the simulation, the beam volumes are known, therefore, the material cost can be calculated. t_{setup} and t_{preheat} in Equation 6.1 are approximately 4 and 5 minutes respectively. The build time t_i is influenced by both the material volume and the scanning patterns. Rapid changes of the FDM extrusion head direction can make it difficult to control the material flow. Therefore, the outlines are drawn to represent the external feature of the part and they are built using a slower plotting speed. The internal fill pattern can be built more rapidly, since the outline represents the external features of the part that corresponds to geometric precision. With the same geometric complexity, the cost increases linearly with the material increase, which the machine cost closely relates to the geometric complexity for FDM. The more complex the geometry, the higher the machine operation cost.

Table 6.1 shows deflection results of the nine Beams. These nine results are interpolated to the deflection graph such that it represents the deflection for any amount of
Table 6.1: Deflection and cost.

<table>
<thead>
<tr>
<th>Beam No.</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Material</td>
<td>20%</td>
<td>30%</td>
<td>40%</td>
<td>50%</td>
<td>60%</td>
<td>70%</td>
<td>80%</td>
<td>90%</td>
<td>100%</td>
</tr>
<tr>
<td>Deflection (mm)</td>
<td>0.297</td>
<td>0.194</td>
<td>0.152</td>
<td>0.129</td>
<td>0.116</td>
<td>0.108</td>
<td>0.103</td>
<td>0.102</td>
<td>0.100</td>
</tr>
<tr>
<td>Mass (g)</td>
<td>4.8</td>
<td>7.2</td>
<td>9.6</td>
<td>12</td>
<td>14.4</td>
<td>16.8</td>
<td>19.2</td>
<td>21.6</td>
<td>24</td>
</tr>
<tr>
<td>Build time (min)</td>
<td>59</td>
<td>74</td>
<td>86</td>
<td>99</td>
<td>111</td>
<td>121</td>
<td>128</td>
<td>124</td>
<td>123</td>
</tr>
<tr>
<td>Cost ($)</td>
<td>33.04</td>
<td>39.76</td>
<td>45.28</td>
<td>51.2</td>
<td>56.72</td>
<td>61.44</td>
<td>64.96</td>
<td>64.08</td>
<td>64.4</td>
</tr>
</tbody>
</table>

Figure 6.6: Deflection and cost for the family of cantilever beams.

Material, subjected to the static load of 10 N. This interpolation is shown as a solid line in Figure 6.6. The deflection behaved according to expectations. For example, we found that Beam 2 with 20\% of v_0 shows a maximum deflection of 0.2976 mm and Beam 10 with 100\% of v_0 shows the least deflection of 0.1 mm. There is a linear relationship between deflection and load for all the beams. However, as the material volume went up to 70\%, Beams 8 to 10 showed very similar deflection. Which means the increase in material use did not contribute to the performances.
The build time t_i was obtained from the open source software Cura\footnote{http://software.ultimaker.com}. The estimation of the build time and cost of the product family components are listed in Table 6.1. The costs for Beams 2 to 10 were interpolated to cost graph that is shown as a dashed line in Figure 6.6. We observed that from Beams 2 to 8 both the build time and the cost increased. However, the build time and cost of Beams 9 and 10 decreased even with more material. From Beams 2 to 10, the material volume increase linearly. Beams 2 to 4 have similar geometric complexity. From Beams 5 to 7, the geometric complexity increases that results in longer scanning length and frequent direction changes of the extrusion head. From Beams 8 to 10, the geometric complexity decreases that results in short scanning length. This explain the cost drop for Beams 9 and 10.

The above discussion was based on the FDM process. For different AM processes, the cost profiles differ. For example, in 3D printing, the bulk of each printed layer, regardless of complexity, is deposited by the same and rapid spreading process. Therefore the build time will be a constant for Beams 1 to 10.

6.3.4 Customization of the cantilever beam product family

The results from the previous step indicated that, though AM offers freedom of design, it does not always offer complexity for free. Specifically, for processes, such as jetting-based systems, the "complexity is free" statement is true; conversely it is not correct for extrusion-based systems\footnote{79}, such as FDM. The build times are higher for complex shapes than for simple shapes since the extrusion-based processes have to trace out the the cross section profile.

Following the updated design requirements, Beams 1 and 2 share the same design (20% v_0) to comply with DFAM restriction of minimum wall thickness, Beams 3, 4, 5, 6, 7 each have distinct optimal designs that offer the individualization, Beams 8, 9 and 10 share the same design (100% v_0) to reduce the product family cost further without
compromising the deflection performance.

6.3.5 Beam fabrication and mechanical verification

For FDM process, virtually all layered processes can deposit material in the horizontal plane much more rapidly than they can build up thickness. Therefore, parts are typically built lying down so that their shortest overall dimension was oriented along the z-axis. All manufactured samples have the same horizontal build orientation, with the flat side surface touching the build platform. The main advantage of this build orientation was that no support structure was needed. The process parameters of all samples were identical and they are listed in Table 6.2. Figure 6.7 shows photos of the successfully fabricated Beams 2 to 10 (with 20% to 100% v_0).

For the manufactured samples, deflection analysis was performed on a dial test indicator with a scale interval of 0.01 mm. The boundary and load conditions for all samples...
Figure 6.8: Elastic properties of the samples calculated from the FEA versus sample measurement.

were identical, Figure 6.2 depicts the setup. One end of the beam was fixed in a clamp, and a 10 N load was applied to the other end. The maximum deflection at the load point was measured and compared to the FEA results.

According to the material provider, PLA has a Poisson ratio of 0.36 and the Young’s modulus ranges from 310 MPa to 5619 MPa. Therefore, each the FEA based deflection simulation for the Beams 2 to 10 yields two results, one for the maximum and the other for the minimum Young’s modulus. Figure 6.8 shows the elastic properties of the samples resulting from both the FEA calculation and the mechanical testing.

The actual maximum deflections of the fabricated samples fell between the two curves, which correspond to the maximum and minimum Young’s modulus values. All three curves, shown in Figure 6.8 indicate the same trend: the product variants with less material have a larger deflection for the 10 N load. Comparing the results indicates that FEA provides relevant information about the mechanical characteristics of a product family early in the design stage. A detailed analysis of the graphs shown in Figure 6.8 reveals that Beam 7 has a slight increment in its maximum deflection compared to Beam 6, which contradicts the FEA result. Such disagreement may be caused by noise in
either the manufacturing process or in the deflection measurement process. However, the
disagreement was small, therefore it did not affect decisions based on FEA models.

6.4 Summary and preview

This chapter proposes an AM process model for product family design. The model out-
lines an optimal customized designs which fully benefits from advanced AM technologies.
To substantiate and discuss the proposed model, a case study of designing a family of
10 cantilever beams was introduced. These beams shared the same design space, but
they had different load and weight requirements. Based on these requirements, the
beam realization was broken down to a material distribution problem which was solved
with topology optimization. The optimization process resolved the geometry and the
structural response, such that the optimized designs could be used for AM. The beam
performance was evaluated with FEA and performance surfaces were constructed. These
performance surfaces and the AM cost model helped us to find the trade-off between
performance and cost within the family of products. Subsequently, beam designs were
fabricated using FDM with PLA. The elastic properties of each sample were established
through FEA and measurements. The model validation was done by comparing the
results of both methods.

Compared with existing methods of designing commonality in product families, the
proposed model greatly increased customization by introducing AM resources. Further-
more, a limited number of variants was extrapolated to a performance surface. In the case
study, ten beams and ten load conditions for each beam were used to evaluate an infinite
number of component realizations. This approach yields a powerful model that can be
used to find optimal designs that meet a prescribed set of performance targets. However,
this extrapolation is only valid for well-behaved component properties. In the cantilever
beam case study, the deflection is such a well behaved linear relationship. In contrast,
the levels of stress do not correlate with the amount of material used. To be specific, we found that a beam with 90% material has a stress concentrating corner. Therefore, this beam showed the second highest levels of stress. Even by taking the restrictions into account, the proposed model can help practitioners to select optimal components for a given set of requirements.

The importance of the AM resources will rise as the production costs go down. Therefore, it will become more and more important to harvest the benefits of this production process in an optimal way. Modeling is a first step to address this problem, because it allows us to conduct ‘what if’ analysis and to extrapolate results. Both considerations are of eminent importance to change the paradigm for truly individualized product family development.

The chapter illustrates a simple product family design. More sophisticated product family design problems are formulated in Chapter 7. As for the cost analysis, we considered only one component per build in this case study. The efficient parallel production of a mixed family of products is demonstrated in next chapter in which the cost saving of the AM will be even more significant compared to traditional manufacturing methods.
Chapter 7

Data-driven product family design for additive manufacturing: design of a finger pump family

In this chapter, the data-driven product family design for Additive Manufacturing (AM) method, that is proposed in Chapter 3, is applied in full to a dialysis finger pump family design for a final verification of the proposed method. Details of the market segmentation and product positioning step have been elaborated in Chapters 4 and 5. In Chapter 6, the design model that integrates AM into product family design is developed to facilitate customization.

The arrangements of the chapter is as follows. Section 7.1 presents overview and motivation of the dialysis pump design. Section 7.2.2 describes Step 1 of the proposed method, namely market segmentation. In Section 7.2.3, AM technologies are assumed to enable the customization. Furthermore, a detailed cost model based on Selective Laser Sintering (SLS) is developed to assess the customization cost. A Utility-Based Compromise Decision Support Problem (n-cDSP) for the family of finger pump is formulated...
and solved in Sections 7.2.4 and 7.2.5 respectively. The results are discussed and benchmarked in Section 7.3. Research findings and lessons learned are summarized at the end of the chapter.

7.1 Overview of the dialysis pump design problem

End Stage Renal Disease (ESRD), commonly known as kidney failure, is a significant medical problem [189]. With a continuing year-to-year increase over a quarter-century, more than 738,000 patients were diagnosed with ESRD in 2012 [190]. Over 560,000 patients depend on treatments in dedicated dialysis centres for three to five hours, usually three times a week. Even with dialysis treatment, patients still suffer from accelerated cardiovascular disease and infections. Hence, technology to miniaturize and automate home dialysis is necessary to offer extended daily dialysis to most ESRD patients. Recent reports estimate that the dialysis at home market size is 7% of the haemodialysis market and 35–52% of current patients qualify for home treatment [190]. This translates to 10,000 patients with home haemodialysis devices in 2012 and the number is expected to grow to over 14,000 by 2017.

Currently, peristaltic pumps, also known as roller pumps, are widely used for drug delivery, pumping of caustic chemicals, dialysis, and cardiac bypass. A significant advantage of roller pumps is that it retains the fluid in the delivering tube so that it does not come into contact with the pumping mechanism. Thus, the mechanism prevents cross contamination of the sterile fluid. For this reason, roller pumps have become very popular in biomedical applications as well as pumping chemicals in lab environments. However, the use of a stiff tube in roller pumps reduces the pumping efficiency. Furthermore, the use of the large motor makes it difficult for these pumps to be utilized in home-based and portable medical devices, where small size and energy efficiency are critical requirements. Therefore, it would be extremely beneficial to develop a small, light and efficient
alternative to the roller pump.

To address the demand for portable home haemodialysis devices, initial investigations demonstrated that substantial improvements in pump size and efficiency were possible \cite{191,192}. An alternative to the roller pump, called a finger pump, has been developed by Kang \cite{192}. The finger pump maintains the benefits of traditional positive displacement roller pumps (i.e., no fluid contamination) with the added benefits of higher efficiency and smaller size compared to pumps with a similar flow rate, as well as a reduction in clotting when pumping biological fluids. Apart from haemodialysis, the portable finger pump design can be utilized in many other applications or market segments where roller pumps are currently used. Each market segment requires different flow rates. Individual pump designs for each specific application would be far too costly and too time consuming, thus limiting the feasibility of expansion and business success.

This chapter highlights the opportunities for AM based product family design. The opportunities open up because we operate in a much broader design space that is free from constraints which arise in traditional product family designs from finding a compromise between commonality and performance of products. A family of positive displacement finger pumps is investigated. The individual products aim to satisfy the diverse needs of home-based and portable medical devices, where small size, energy efficiency and low cost are critical requirements. The product family design problem is reformulated with broader ranges for the design variables and without the requirement for commonality. The problem is solved using a utility-based optimization method for each product variant, since commonality is no longer required. The product family is assumed to be manufactured using AM, with a suitable cost model and objective, so that they can be designed for individual needs or applications. The product family is motivated specifically by the need for new haemodialysis systems, but it has a broader market base when more application domains are considered.
7.2 The finger pump family design

The data-driven product family design for AM method is used to develop a scalable finger pump family. AM provides affordable customization, eliminating design trade-offs between product performance and cost. A key assumption in product family design is that increased standardization leads to reduced cost, while increased variety results in significant cost increases. This assumption is no longer valid when AM is used to manufacture components in a product family. A formulation for a scalable product family design problem is presented in this section, along with a design method which is specifically formulated for AM-based mechanical part fabrication.

7.2.1 The finger pump model description

A Computer Aided Design (CAD) model of the pump design is shown in Figure 7.1. Two rows of fingers are utilized in the pump, where one row is used to pump blood, while the other pumps the dialysate. The displacement pattern of the fingers is controlled by a camshaft that is driven by an electric motor through a gear train. The pump assembly consists of housing, fingers, and camshaft. The finger pump has five design variables.
including tube width (t_w), tube height (t_h), finger width (f_w), number of fingers on each side (n_f), and voltage (v). The pump width (p_l), depth (p_d), and height (p_h) dimensions and the volume of the pump (vol) are variables that depend on these five design variables. The achieved pump flow rate, efficiency are represented by f_r and η respectively. The mathematical model of the finger pump in this work is developed according to Kang et al. [192]. The following equations describe the relationship between the variables.

Finger pump volume calculation

The finger pump volume is calculated by multiplying the three characteristic lengths of the pump as shown in Equation 7.1.

\[
vol = p_l \times p_d \times p_h \\
n_f = n_f \times f_w + \alpha \\
p_l = 2 \times (t_w + \beta) \\
p_h = t_h + \gamma
\]

(7.1)

where α, β and γ are constants. For the current implementation these values are set to $\alpha = 1$ cm, $\beta = 1$ cm and $\gamma = 2$ cm. Note that these constants can be adjusted to accommodate design changes such as added frame stiffness.

Flow rate calculation

The flow in the finger pump is generated by a motor driven cam, which sequentially presses the fingers onto the tube. The finger movement compresses the fluid filled tubing thus pushing the fluid forward. Therefore, the volume of fluid displaced by a finger stroke (ml) and the rate of the strokes per minute determine the pump flow rate, as shown in Equation 7.2.

\[
f_r = \text{Volume per Stroke} \times \text{Rate of Strokes}
\]

(7.2)
The volume per stroke is the volume of fluid in the section of tubing beneath the finger about to be displaced, therefore the volume per stroke is the product of the tube cross section and the finger width. When the tube is inserted into the pump, it takes the shape of a long oval, as shown in Figure 7.1. While the oval cross section can be calculated as the product of the tube width and tube height with a constant, namely $\pi/4$. Testing the model against experimental measurements revealed that the model overestimates the pump flow rate. This is due to a number of effects, such as head change, and back flow. To compensate for these losses, the cross section has been adjusted to an effective cross section using an “oval constant”. The oval constant is used as a lumped constant to account for pump losses and it was determined using experimental data.

Assuming a 1:1 gearing from the motor to the cam shaft, each motor revolution results in one stroke for each finger in the row. The rate of strokes is therefore the product of the motor speed and the number of fingers in the row. The Volume per Stroke and Rate of Strokes are calculated using Equation 7.3.

\[
\text{Volume per Stroke} = \text{Effective Cross Section} \times f_w
\]

\[
\text{Effective Cross Section} = \text{Oval Constant} \times t_w \times t_h
\]

(7.3)

for the current pump setup the Oval Constant is set to be 0.589. The motor speed, as a function of input voltage, is approximated by a linear fit of experimental data:

\[
\text{Motor Speed} = 9.083 \times v + 6.514.
\]

Efficiency calculation

The finger pump efficiency is calculated by dividing the fluid power by the brake power. Fluid power refers to the theoretical power required to transport the fluid at a specified flow rate and pressure. For this biomedical application, the pressure is set to be blood pressure, 100 mmHg. Brake refers to the power required to operate the pump. The
efficiency is calculation is shown in Equation 7.4.

\[
\eta = \frac{\text{Fluid Power}}{\text{Brake Power}}
\]

Fluid Power = \(f_r \times \text{Pressure} \)

Brake Power = \(v \times \text{Current} \)

\((7.4) \)

7.2.2 Step 1: define market segmentation

The hemodialysis market is approximately US$ 8 billion; of which US$6 billion is recurring revenue from disposable sales and the remaining US$2 billion is from device sales. The home hemodialysis captures 7% of this market, equating to approximately US$ 560 million [190]. The market, as a whole, is growing rapidly due to the increasing number of patients. Most of the future market growth is expected to come from the home dialysis segment, as the Figure 7.2 demonstrates. Dialysis can be categorized into three types according to dialyzer flow rate [193], as shown in Table 7.1.

As stated at the previous section, the objective of this example is to design a scalable finger pump family that meet different flow rate requirements. The target market segments are assumed to require low to medium efficiency dialysis types. The customization is offered for any flow rate between 100 ml/min to 600 ml/min. The flow rate was chosen.
Table 7.1: Specifications of dialyzer types.

<table>
<thead>
<tr>
<th>Dialysis Type</th>
<th>Flowrate (ml/min)</th>
<th>Application</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type 1</td>
<td>Less than 500</td>
<td>Be used for “low-efficiency” dialysis or young patients.</td>
</tr>
<tr>
<td>Type 2</td>
<td>500–700</td>
<td>Be used for “medium-efficiency” dialysis or routine therapy.</td>
</tr>
<tr>
<td>Type 3</td>
<td>Greater than 700</td>
<td>Be used for “high-efficiency” dialysis in a large size patient when a 4 hour dialysis session is not adequate.</td>
</tr>
</tbody>
</table>

such that it covers the common US pump flow rates (400–450 ml/min) and the European pump flow rates (250–300 ml/min) [194]. Higher pump flow rates, i.e. above 600 ml/min, carry the risk of fistula clotting and fistula wall damage[1].

The demand was modeled as a uniform distribution of 1,000 products per year across the space according to the annual demand increase in Figure 7.2. Based on the flow rate requirements that distinguish the product family variants, the designer identifies a set of scaling variables. The scaling variables: t_w, t_h, f_w, n_f, and v, control the size and performance of products in the family.

The market segmentation grid, shown in Figure 7.3, depicts a desired leveraging strategy for the finger pump family. The goal is to design a finger pump family which can be leveraged vertically for different market segments with different flow rate requirements.

7.2.3 Step 2: optimize individual products for additive manufacturing

The customized finger pump family designs are assumed to be fabricated using [AM]. As discussed in Sections 2.4 and 3.2.2 with the advantages of [AM] the complete customization of each finger pump design is possible. We can design a product that provides the required flow rate in the entire design space. In order to identify the extent of the customization, bounds on the scaling variables are defined as shown in Table 7.2. Goals are identified that represent objectives to be achieved, and these goals are functions of

Figure 7.3: Finger pump market segmentation grid.

Table 7.2: Bounds of the scaling variables.

<table>
<thead>
<tr>
<th>Scaling Variables</th>
<th>Units</th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>t_w</td>
<td>cm</td>
<td>0.5</td>
<td>2.5</td>
</tr>
<tr>
<td>t_h</td>
<td>cm</td>
<td>0.5</td>
<td>3.0</td>
</tr>
<tr>
<td>f_w</td>
<td>cm</td>
<td>0.3</td>
<td>1.0</td>
</tr>
<tr>
<td>n_f</td>
<td>No.</td>
<td>5</td>
<td>12</td>
</tr>
<tr>
<td>v</td>
<td>Volts</td>
<td>2</td>
<td>12</td>
</tr>
</tbody>
</table>

the design variables. The finger pump family design goals are to maximize the overall performance and minimize the manufacturing cost. The performance is characterized by two objective functions: pump efficiency maximization and pump volume minimization.

The average efficiency and volume of the finger pump family is calculated as the average of each pump efficiency and volume respectively. Similarly, the average cost is calculated as the average of cost for each pump product. The mathematical models are
shown in Equation 7.5

\[
\eta = \frac{1}{n} \sum_{i=1}^{n} \eta_i
\]

\[
\bar{vol} = \frac{1}{n} \times p_l \times p_d \times p_h
\]

\[
\bar{C} = \frac{1}{n} \sum_{i=1}^{n} C_i
\]

(7.5)

where \(n \) is the total number of variants.

Additive manufacturing cost model formulation

The following cost analysis is based the polymer Powder Bed Fusion (PBF) (also known as SLS) process. Though the cost estimation, used in this research, is based on the SLS process, it is applicable to most AM techniques [79]. The cost \((C) \) can be broken down into machine purchase \((P) \), machine operation \((O) \), material \((M) \) and labour \((L) \) costs, as is expressed in Equation 6.2. It is reproduced here for convenience.

\[
C = P + O + M + L
\]

We assume that there are \(n \) variants in the product family. To simplify the cost model, we assume that each SLS build consists of copies of a single variant. Once the cost of each build, \(C_{B_i} \), is found, the cost of the single part, \(C_{P_i} \), can be calculated as the entire cost of the build divided by the number of the parts, \(N_i \), in each build. The purchase price for one build is defined as:

\[
P = \text{Purchase Price} \times \frac{T_B}{\text{Uptime} \times 24 \times 365 \times \text{Year}}
\]

(7.6)

where Purchase Price is the machine cost in dollars, \(T_B \) is the time for the build in hours, \(\text{Year} \) is the life span of the machine, and \(\text{Uptime} \) represents the machine utilization rate.

The operation cost per part, \(O \), is defined in Equation 6.4. It is also reproduced here for convenience.

\[
O = T_B \times C_o
\]
The operation cost is the cost that relates to machine maintenance, utility costs, factory floor space cost, and company overhead. C_o is the operation cost rate.

The material cost (M) is given by:

$$M = (V_B + W_B) \times \rho \times C_m$$
$$W_B = (1 - \sigma) \times (V_{bed} - V_B)$$

where V_B is the volume of the entire build, sum of the N parts with volume (V_P) include in the build; W_B is the material volume wasted per build; ρ is the material mass density; C_m is the material cost per kg; V_{bed} is the volume of the build platform that is express by PL_x, PL_y, and PL_z; PL_x, PL_y, and PL_z are the size of the platform in x, y, and z dimensions; $\sigma \in [0, 1]$ is the recycle factor, depending on manufacturing process. In this case, we assume $\sigma = 0.8$.

Labor cost is related to the time T_l required for technicians to set up the build, remove fabricated parts, clean the parts, and get the machine ready for the next build.

$$L = \frac{\text{TechSalary} \times T_l}{\text{Annualworkh}}$$

where TechSalary is the technician salary per year and Annualworkh represents the annual work hours.

Build time model

The time required to fabricate the parts is an important factor which influences the operation cost. The manufacturing time per build can be expressed as the sum of scan or deposition time (T_{xy}), recoat time (T_z), and delay time (T_d). We adapted the time functions from Ruffo et al. [195]. The total manufacturing time T_B is calculated as:

$$T_B = T_{xy} + T_z + T_d$$
To determine material deposition time the part layout is crucial. In this scenario, we assume that all parts are of similar size and they are laid out in a rectangular grid from left to right and top to bottom based on their bounding box sizes. The bounding box V_{bb} is the minimum geometrical box that contains a part. bb_x, bb_y, and bb_z are the bounding box in x, y, and z dimensions respectively. In addition, x, y, and z dimension gaps as well as edge gaps, are defined to ensure that parts do not touch or get too close to the edges: g_x, g_y, g_z, and g_e respectively (defined in mm). The number of parts that can fit in x, y and z directions are N_x, N_y and N_z respectively. The maximum number of parts in each build can be computed as in Equation 7.10:

$$N = N_x \times N_y \times N_z = \left(\frac{PL_x + g_x - 2g_e}{bb_x + g_x} \right) \left(\frac{PL_y + g_y - 2g_e}{bb_y + g_y} \right) \left(\frac{PL_z + g_z - 2g_e}{bb_z + g_z} \right)$$

(7.10)

The recoating time T_z is linear to total height of the packing layers ($bb_z \times N_z$). It is expressed as follows:

$$T_z = (180 - 120 \times \delta) \times bb_z \times N_z + 400$$

(7.11)

where $\delta \in [0, 1]$ is the packing ratio, that is defined as the ratio between V_B and V_{bed}.

The deposition time T_{xy} can be approximated by Equation 7.12 [195]. It is based on the time to scan the entire bounding box, reduced by a density factor $\vartheta \in [0, 1]$.

$$T_{xy} = \vartheta \times T_{bb_{xy}}$$

$$T_{bb_{xy}} = (0.042 \times (bb_x \times N_x)^{-0.1809} \times bb_x \times bb_y) \times bb_z \times N$$

$$\vartheta = \begin{cases}
0.3422 \times \tau^2 + 0.2468 \times \tau + 0.45 & \text{if } \tau < 0.4 \\
0.417 \times e^{0.9283 \times \tau} & \text{if } \tau > 0.4
\end{cases}$$

(7.12)

where $T_{bb_{xy}}$ is the time to scan all the bounding box layers in the build. τ is the compact ratio, and it is defined as the ratio between the volume of the part (V_P) and the volume
Table 7.3: Machine and material costs.

<table>
<thead>
<tr>
<th>Machine costs</th>
<th>Material costs</th>
</tr>
</thead>
<tbody>
<tr>
<td>P = $850,000</td>
<td>$ \rho = 10^{-3} \text{ g/mm}^3$</td>
</tr>
<tr>
<td>$V_{bed} = 550 \times 550 \times 750 \text{ mm}^3$</td>
<td>$C_m = 70 \text{ US$/kg}$</td>
</tr>
<tr>
<td>$C_O = 22 \text{ US$/hr}$</td>
<td>Production labour costs</td>
</tr>
<tr>
<td>Year = 7 years</td>
<td>TechSalary = $51400 \text{ US$}$</td>
</tr>
<tr>
<td>Uptime = 0.8</td>
<td>$T_l = 3 \text{ hours}$</td>
</tr>
<tr>
<td></td>
<td>Annualworkh = 2080 hours</td>
</tr>
</tbody>
</table>

Many processes have delays built into their operations. The values of these delays are constant and they are set up by an operator. In accordance with the 3D systems recommendation, the delay time (T_d) was selected as 60 min.

In the current example, the finger pumps are fabricated using a 3D Systems™ sPro 230 HS model, and the material is Duraform PA (3D Systems™). Table 7.3 details machine and material costs. The bounding box of the finger pump is expressed as $V_{bb} = t_l \times t_d \times t_h$. From the CAD information, of the individual design volumes and their bounding box volumes, an approximation value of 0.334 was extracted for the compact ratio τ.

The cost model, established in this section, is general, therefore it is applicable to any additive manufacturing technique, although the particular case study here focused on an SLS machine.

7.2.4 Step 3: formulation of the utility-based product family design problem

Section 2.3 discussed how to formulate a u-cDSP. In this section, we formulate the finger pump family design as a generic scaling problem. The resulting model has five design variables, five constraints, and three goals.
Table 7.4: Finger pump utility function assessment.

<table>
<thead>
<tr>
<th>Utility Value</th>
<th>Design Situation</th>
<th>Volume (ml)</th>
<th>Efficiency</th>
<th>Cost (US$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>The decision-maker’s ideal attribute level</td>
<td>50</td>
<td>0.55</td>
<td>30</td>
</tr>
<tr>
<td>0.75</td>
<td>Desirable attribute level</td>
<td>100</td>
<td>0.35</td>
<td>60</td>
</tr>
<tr>
<td>0.50</td>
<td>50-50 chance of an unacceptable or an ideal attribute levels</td>
<td>150</td>
<td>0.25</td>
<td>150</td>
</tr>
<tr>
<td>0.25</td>
<td>Undesirable attribute level</td>
<td>200</td>
<td>0.15</td>
<td>200</td>
</tr>
<tr>
<td>0</td>
<td>Unacceptable attribute level</td>
<td>250</td>
<td>0.05</td>
<td>250</td>
</tr>
</tbody>
</table>

Utility functions

First, the designer’s preferences are assessed to determine the utility values, as shown in Table 7.4. These utility values are fitted with polynomial curves in order to establish the independent utility equations, for pump efficiency, volume, and cost as shown below. Figure 7.4 shows the plot of the utility functions.

\[u_\eta = -2.025\eta^2 + 3.258\eta - 0.172 \]
\[u_{vol} = -1.419 \times 10^{-5}vol^2 - 8.781 \times 10^{-4}vol + 1.084 \] (7.13)
\[u_C = -2.343 \times 10^{-6}C^2 - 3.589 \times 10^{-3}C + 1.056 \]

Next, the individual utility functions are combined into a multi-attribute utility function. This is accomplished through a weighted sum of the three utility functions:

\[U = k_\eta u_\eta + k_{vol} u_{vol} + k_C u_C \] (7.14)

where \(k_\eta, k_{vol}, \) and \(k_C \) are scaling constants for efficiency, volume, and cost. These scaling constants are decided based on designers’ preferences. For example, they can be set as \(k_\eta = 1/3, k_{vol} = 1/3, \) and \(k_C = 1/3 \) respectively.

Finally, the objective function is formulated to minimize the deviation from the target utility (i.e. 1), which is equivalent to minimizing overall performance \(Z \), as shown in
Equation 7.15

$$Z = 1 - \mathbb{E}(U)$$ \hfill (7.15)

where $\mathbb{E}(\ldots)$ is the expectation function, and U is defined in Equation 7.14.

When AM is used as manufacturing resource, there is no design and manufacturing constraints from a trade-off between commonality and performance. It is assumed that the design method allows any flow rate requirement, which range from 100 ml/min to 600 ml/min. The final objective is to minimize the average deviation function, \overline{Z}_i that is defined by Equation 7.16

$$\overline{Z}_i = \frac{1}{n} \sum_{i=1}^{n} Z_i$$ \hfill (7.16)

where $i = 1, 2, \ldots, n$ based on the level discretization from $f_r = [100, 600]$ according to customer requirements, Z_i is given by Equation 7.15
Table 7.5: Problem formulation for the finger pump family design.

Given:
- Desired flow rate \(f_r = [100, 600] \)
- Discretization according to customer requirements
- Finger pump equations (see Section 7.2.4)

Find:
Design Variables \(x \):
\(x = (t_w, t_h, f_w, n_f, v) \)

Satisfy:
- Bounds: \(0.5 \leq t_w \leq 2.5 \) cm; \(0.5 \leq t_h \leq 2.5 \) cm; \(0.3 \leq f_w \leq 1.0 \) cm; \(5 \leq n_f \leq 12 \); \(2 \leq v \leq 12 \) Volts
- Goals:
 - Maximize efficiency: \(\mathbb{E}(u_\eta) + d_1^- + d_1^+ = 1 \);
 - Minimize volume: \(\mathbb{E}(u_{vol}) + d_2^- + d_2^+ = 1 \);
 - Minimize cost: \(\mathbb{E}(u_C) + d_3^- + d_3^+ = 1 \);

 \(d_x^- \) and \(d_x^+ \) are defined in Equation 7.13.

Minimize:
The objective function \(Z_i = \frac{1}{n} \sum_{i=1}^{n} Z_i \)

The decision support problem formulation

To determine the best combination of performance and cost for the finger pump family, the u-cDSP is formulated as shown in Table 7.5. The goal of this formulation is to find the design variables that minimize the aggregated objective function as discussed in Section 7.2.4

7.2.5 Step 4: Solve the optimization problem to define the product family

The proposed method is able to meet any flow rate requirement from 100 ml/min to 600 ml/min. To demonstrate how the proposed method offers customization, the customization space of the pump flow rate is discretized into 50 ml/min increments. Therefore, we need to customize 11 finger pumps which offer the flow rates of 100 ml/min,
Table 7.6: Customized finger pump variants with AM-based design.

<table>
<thead>
<tr>
<th>Flow Rate (No.)</th>
<th>n_f</th>
<th>t_w (cm)</th>
<th>t_h (cm)</th>
<th>f_w (cm)</th>
<th>v (Volts)</th>
<th>C_P (US$)</th>
<th>η (%)</th>
<th>vol (cm3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>6</td>
<td>1.81</td>
<td>2.22</td>
<td>0.37</td>
<td>2.57</td>
<td>35.08</td>
<td>20.20</td>
<td>76.62</td>
</tr>
<tr>
<td>150</td>
<td>6</td>
<td>1.61</td>
<td>2.01</td>
<td>0.53</td>
<td>3.15</td>
<td>40.71</td>
<td>20.18</td>
<td>87.68</td>
</tr>
<tr>
<td>200</td>
<td>6</td>
<td>1.82</td>
<td>2.23</td>
<td>0.48</td>
<td>3.61</td>
<td>40.59</td>
<td>20.41</td>
<td>91.90</td>
</tr>
<tr>
<td>250</td>
<td>6</td>
<td>1.68</td>
<td>2.07</td>
<td>0.60</td>
<td>4.07</td>
<td>46.16</td>
<td>20.10</td>
<td>100.55</td>
</tr>
<tr>
<td>300</td>
<td>6</td>
<td>1.71</td>
<td>2.08</td>
<td>0.63</td>
<td>4.47</td>
<td>47.65</td>
<td>19.98</td>
<td>105.83</td>
</tr>
<tr>
<td>350</td>
<td>6</td>
<td>1.73</td>
<td>2.11</td>
<td>0.66</td>
<td>4.83</td>
<td>49.02</td>
<td>19.96</td>
<td>110.74</td>
</tr>
<tr>
<td>400</td>
<td>6</td>
<td>1.86</td>
<td>2.24</td>
<td>0.70</td>
<td>4.60</td>
<td>55.55</td>
<td>25.18</td>
<td>125.40</td>
</tr>
<tr>
<td>450</td>
<td>6</td>
<td>1.91</td>
<td>2.29</td>
<td>0.74</td>
<td>4.65</td>
<td>62.68</td>
<td>27.79</td>
<td>135.35</td>
</tr>
<tr>
<td>500</td>
<td>6</td>
<td>1.97</td>
<td>2.35</td>
<td>0.72</td>
<td>4.95</td>
<td>63.25</td>
<td>27.17</td>
<td>131.11</td>
</tr>
<tr>
<td>550</td>
<td>6</td>
<td>2.07</td>
<td>2.46</td>
<td>0.72</td>
<td>4.94</td>
<td>65.79</td>
<td>30.03</td>
<td>145.81</td>
</tr>
<tr>
<td>600</td>
<td>6</td>
<td>2.01</td>
<td>2.46</td>
<td>0.74</td>
<td>5.35</td>
<td>65.77</td>
<td>27.94</td>
<td>145.91</td>
</tr>
</tbody>
</table>

150 ml/min, 200 ml/min, ..., 550 ml/min, 600 ml/min. The corresponding design variable values, performance and cost are obtained by solving the multi-objective Decision Support Problem (DSP).

The multi-objective DSP is solved using the Matlab constrained nonlinear optimization function, fmincon. The source code is provided in Appendix A.1. The 11 individually optimized pump design variable values along with their performance (efficiency and volume), and AM cost are shown in Table 7.6 and in Figure 7.5.

7.3 Comparison to product platform constructal theory method results

A close look at the results in Table 7.5 reveals that four out of five design variables took distinct values for each flow rate requirement. However, the number of pump fingers (n_f) was constant across the entire design space. The pump volume increased in accordance with an increasing flow rate requirement, as expected. The efficiency of all pumps was over 20%. As shown in Figure 7.5, the pump cost also increased as the flow rate went up. Interestingly, we can observe the cost level off for adjacent pumps, for example, pumps with flow rate 150 ml/min and 200 ml/min, and the largest 3–4 pumps. The reason for the insignificant cost change is that the main cost contribution factor T_B, as define in
Figure 7.5: Individual finger pump efficiency, volume and cost
Equation 7.9 keeps similar with subtle adjustment of design variables. This validates our proposition that, with AM beneficial properties, the subtle changes to product family variant geometries do not necessarily result in higher manufacturing cost. In addition, we investigated different utility weights for each objective function and repeated the optimization process. Even with widely different weights, the resulting pump designs, volumes, efficiencies, and costs showed insignificant changes. Thus, it seems that a truly affordable customization is possible.

Table 7.7 compares the performance results of the proposed method with the sensitivity-based Product Platform Contractual Theory Method (PPCTM) method for the same product family design problem [191]. The efficiency and volume of each finger pump, from both families, are listed, along with the performance difference between the two families in percent. For the efficiency, a positive change denotes an improvement from the benchmark to the proposed method. For the volume, a negative change denotes an improvement of the proposed method. Both product family designs meet their goals for different flow rate requirements. The proposed method shows a significant improvement of the product performances. The average efficiency increased by 25.02%, along with an average volume reduction of 26.12%.

The PPCTM design method assumes traditional manufacturing as a product realization method. The need for production tooling makes customized products costly and significantly increases the time to market. In contrast, the method we propose uses AM to increase the diversity of product variants without dramatically increasing the cost. Furthermore, the introduction of new products is much faster and less risky than with traditional manufacturing methods, due to the elimination of costly production tooling. Therefore, the incorporation of AM into product family design has competitive advantages.
Table 7.7: Customized finger pump variants with AM-based design and comparison of baseline results.

<table>
<thead>
<tr>
<th>Flow Rate</th>
<th>Utility-based Product Family Optimization with AM</th>
<th>Sensitivity-based PPCTM Pumps</th>
<th>Performance Improvement (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>C_F (US$)</td>
<td>η (%)</td>
<td>vol (cm3)</td>
</tr>
<tr>
<td>100</td>
<td>35.08</td>
<td>20.20</td>
<td>76.62</td>
</tr>
<tr>
<td>150</td>
<td>40.71</td>
<td>20.18</td>
<td>87.68</td>
</tr>
<tr>
<td>200</td>
<td>40.59</td>
<td>20.41</td>
<td>91.99</td>
</tr>
<tr>
<td>250</td>
<td>46.16</td>
<td>20.10</td>
<td>100.55</td>
</tr>
<tr>
<td>300</td>
<td>47.65</td>
<td>19.98</td>
<td>105.83</td>
</tr>
<tr>
<td>350</td>
<td>49.02</td>
<td>19.96</td>
<td>110.74</td>
</tr>
<tr>
<td>400</td>
<td>55.55</td>
<td>25.18</td>
<td>125.40</td>
</tr>
<tr>
<td>450</td>
<td>62.68</td>
<td>27.79</td>
<td>135.35</td>
</tr>
<tr>
<td>500</td>
<td>63.25</td>
<td>27.17</td>
<td>137.11</td>
</tr>
<tr>
<td>550</td>
<td>65.79</td>
<td>30.03</td>
<td>145.81</td>
</tr>
<tr>
<td>600</td>
<td>65.77</td>
<td>27.94</td>
<td>145.91</td>
</tr>
</tbody>
</table>

Average improvement: 25.02 -26.12

7.4 Summary

In this chapter, the proposed method is applied in full to the design of a finger pump family. The finger pump family is based on a common scalable product platform that is scaled around five design variables to provide different flow rates. The market segmentation grid helps us to identify the targeting market segments and the appropriate leveraging strategy. By introducing AM to the product family design, all constraints, which arise in traditional product family designs from finding a compromise between commonality and performance of products, are eliminated. After determining both the design space and objectives, the finger pump family optimization problems are formulated. The optimization step yields individual optimized products.

The proposed method achieved significant performance improvement when compared to the design methods that are constrained by traditional manufacturing processes and therefore have to exploit the commonality between products. With the advantages of AM, the customized finger pumps can be fabricated in a more economic way when compare to traditional manufacturing methods. Our method provides truly affordable individualized
designs without compromising the performance.

In conclusion, the proposed method provides a solution for improved mass customization. It offers affordable customized designs without dramatically increasing the manufacturing cost. The integration of AM into product family design holds the promise of reducing the current design for manufacturing efforts. However, further research work is necessary, because the use of AM for the production of functional products and assemblies is largely unexplored. We believe that a widespread adoption of AM would reduce the machine and material costs due to the economies of scale. This would significantly reduce part costs and make AM an even more viable production route.

The next and final chapter presents a summary of achievements and contributions of the work. A critical review of the current research and a discussion of possible directions of future work are also provided.
Chapter 8

Closure: achievements and recommendations

This thesis presents a data-driven product family design for Additive Manufacturing (AM) method. The preceding text shows a theoretical introduction to the topic of AM-based product family design and practical case studies on implementation and testing. In this chapter, the development and presentation of this method is brought to a close. Section 8.1 summarizes the research work that has been done since August 2011. Section 8.2 explains and highlights the resulting contributions. Section 8.3 discusses limitations and general shortcomings of the proposed methods. Possible directions of future work are described in Section 8.4. Finally, Section 8.5 gives concluding remarks to close this chapter and the thesis.

8.1 Research summary

To create a product is a mentally demanding process; to master it requires an enormous amount of learning and focused dedication. This thesis outlines our knowledge and novel ideas on the topic of data-driven product family design for AM. The research has focused
on data-driven product family design for AM method to improve mass customization.

As discussed in Chapter 1, the three primary research questions are:

| Research question 1: How to enable more agile and more accurate decision-making for market segmentation and product positioning? |
| Research question 2: How to incorporate AM into product family design processes in order to facilitate customization in targeted market segments? |
| Research question 3: How to mathematically model and support product platform decisions that involve multiple objectives? |

To answer the first research question we conducted a critical literature review, which is outlined in Section 2.2. During the literature review, we found that objective decision making is of paramount importance in the current and in the future socio-economic environment. Subjective and biased decision making leads to inferior results. In a product design environment, such decisions may lead to sub-standard products which are less competitive. As a consequence, we formulated the following research thesis: Data Mining (DM) and machine learning technologies should be used to improve the objectiveness of decision making processes. Chapters 4 and 5 presented both the theoretical and empirical validation for the proposed Decision Support System (DSS). Section 4.2 established the DSS to support the decision making in market segmentation and product positioning. To augment this DSS, Section 5.2 proposed a framework to how to develop more rigorous DSS for the decision support problems at hand. The automotive example was used to test and validate the proposed method. While only demonstrated for one example, it is asserted that the proposed DSS is generally applicable to other examples where appropriate data is available.

For the second research question, the stand-of-the-art AM technologies were reviewed and the impact on customization design was analyzed in Section 2.4. We found that the AM based product family designs can operate in a much broader design space that
is free from constraints which arise in traditional product family designs from finding a compromise between commonality and performance of products. In order to take advantage of the new manufacturing technology, the AM process model is established in Section 6.2. In Section 6.3 the cantilever beam family design example demonstrates how to the proposed model facilitate AM technologies to provide the customization.

To answer the third research question, we reviewed and compared Decision Support Problem (DSP) methods. Both review process and review results are outlined in Section 2.3. For the scalable product family design, the individual targets for derivative products can be aggregated into a weighted single target using the Utility-Based Compromise Decision Support Problem (u-cDSP) method. The holistic method, which integrates the three constructs, namely data-driven DSS for market segmentation and product positioning, the AM process model for product family design, and u-cDSP method, is presented in Chapter 2.3. The full implementation of the method is demonstrated in Chapter 7 for the finger pump family design. The benchmarking shows that the proposed method achieved significant performance improvement when compared to the design methods that are constrained by tradition manufacturing processes and therefore need to exploit commonality. It provides truly affordable customization without compromising the product performances.

A summary of the research contributions is presented in the next section.

8.2 Research contributions

This research work is focused on the data-driven product family design for AM. The primary contribution of this research is that it establishes a systematic framework that seamlessly integrates AM into product family design to facilitate affordable customization. The main result of the framework is the data-driven DSS to support market segmentation and product positioning decision making. It is expected that the proposed
method will redefine how we think about customization in product family design. Other major contributions include:

- Develop the data-driven DSS called Decision Support System Database Explorer (DSSDB Explorer), for automated market segmentation and product positioning [138].
- Provide an unparalleled benchmark for 81 different combinations of DM and machine learning techniques in the product family design domain [17].
- Provide a framework for the construction of a robust DSS.
- Redefine customization in product family design by incorporating AM technologies [196].
- Develop a cost model for a family of products which are fabricated using Selective Laser Sintering (SLS).
- Solve the multi-objective [1-cDSP] for product family design.

The contributions, associated with data-driven methods for market segmentation and product positioning, lead to more robust design methods. DM and machine learning methods have been widely used to solve product family design related problems. However, most of these methods arbitrarily chose one or several techniques. The comparison of the performance accuracy for different DSSs in the product family design had never been performed in such depth and breadth.

By incorporating AM for customization in product family design, we contributed significantly to both understanding and improving of mass customization. The improvements come from the fact that the proposed method eliminates the constraints which arise in traditional product family designs from finding a compromise between commonality and individual performances. Our literature review shows that the proposed method
reduces a research gap, because there is a lack of structured approaches which utilize the advantages of AM in product family design. Most of the existing product family design methods focused on the trade-offs between commonality and performance in the conventional manufacturing context. However, the AM technologies redefine the way we think about customization. The case study showed that the proposed AM-based process model for product family design translate the benefits of AM into improved customization and cost reduction.

The formulation and solving of the u-cDSP are not of significant value since these techniques were adopted from the literature. However, extending them such that they can be used to solve AM cost related problem is unique. Extending the u-cDSP technique provides insights that can be used to improve existing methods.

In summary, the resulting data-driven product family design for AM method provides additional knowledge of and a new concept for product family design and mass customization. However, the proposed method is by no means without limitations. Towards this end, a critical evaluation of the research is offered in the next section.

8.3 Limitations

In this section, the research itself is critically evaluated. The research is based on assumptions, which might turn out to be false, and raise new, hopefully more refined, questions.

For the application of the proposed method, there are two basic requirements. First, the design variables or the input of the DSS are assumed to be known as priori. The selection of these inputs limit the objective decision making. For example, in the automotive case study in Chapters 4 and 5 it takes a decision making process to determine which input to use and how to rank this input, such as Length, Width and Height. The immediate question is: What design information are relevant and dominate for the
design process? The answer to this question is always centered on an implicit decision. DM and machine learning technologies mechanize both clustering (market segmentation) and classification (product positioning) processes. These processes are mathematically correct, i.e. they follow understandable algorithms. However, one limitation of these algorithms is that they were invented by humans to solve specific problems, therefore all of these algorithms have an inherent bias which diminishes their objectivity. Classification requires a training phase which is based on known data. In most cases this training data was classified through subjective decision making processes. Hence, during the classification phase the algorithm applies subjective decision making criteria in an objective way. In terms of objectivity this is a major drawback. However the training data comes from successful product designs, this, at least to some extent, validates the training process. More abstractly speaking, the objective algorithm has learned good decision making and this is now available access to wide range of designs.

In addition to the type of clustering and the distance measurement technique, results of a clustering problem depend upon the selection of variables. The selection of “good” variables may come about with a fair bit of trial and error complemented with the analyst’s intuition and background knowledge of the data set. Selection of “unwanted” variables leads to clusters that do not present an informative structure. Additionally, “goodness” of the clustering solution should be measured using various indices. This is an inexact science and requires some degree of subjectivity.

Another limitation of the proposed method comes from the assumptions made when we incorporated AM into the product family design process. Both guidelines and criteria for the selection of either AM or traditional manufacturing technologies for part realization are needed in the research community. For example, in Chapter 7 the family of finger pump assemblies are assumed to automatically produced using SLS. The cost analysis is based on the SLS process. The exploration of most cost effective way is not conducted. For instance, which modules or components should be fabricated using
traditional manufacturing methods, and which ones should be fabricated using AM technologies. Furthermore, the demand is assumed to be uniform, the uncertainty in demand does not taken into account.

Exploring the limitation of the use of the utility theory, it is noted that its use might not be entirely warranted. The major weakness comes from its dependence on the rationality and capability of the decision maker to effectively quantify their preferences consistently.

Though the research has certain limitations, these limitations provide an avenue for the future improvements. Recommendations for the future work in the areas of data-driven product family design and AM for customization are discussed in the next section.

8.4 Recommendations and future work

The ability to meet diverse Customer Needs (CNs) and manufacture customized products or features with the efficiency and affordable cost, is increasingly recognized as a source of competitiveness in future markets. In order to achieve this capability, the design methodologies should concurrently consider product design, production design and organization design. The key areas to be addressed include the following:

- Identify customized features, modules or full products based on CNs data,
- Design for Additive Manufacturing (DFAM) rules and principles to suggest which AM technologies and materials should be used to provide customization,
- Concurrent design of product and process architectures,
- Systematic DSS that integrate market analysis, product design and manufacturing, and supply chain.
- Improve the performance of the DSS by integrating and benchmarking even more advanced decision support tools and utilities.

142
In the future, we aim to improve the performance of the proposed DSS by integrating and benchmarking even more advanced decision support tools and utilities. This helps us to address the problems that are posed by theoretical and practical management tasks better. Future work will focus on extending the ideas of the system to cover all elements of the product life cycle in the early stage of product development, in order to improve the decision processes in concurrent engineering.

There is one good reason why data-driven methods for product family design will get more and more important in the future. The reason comes from the fact that there is a steady increase in the amount of available data. For example, new technology will bring new sensors with higher resolution which are deployed pervasively. The latest data from various sources is piled on top of legacy data. Most of the time there will be little or no structure in this data. To make sense of this data will be the challenge which decides the future of an enterprise. Even at current levels, it is impossible for humans to deal with all that data. DM is necessary for enterprises to benefit from the data. However even with DM the extracted information might be, and many cases still is, too complex or too much removed from an understandable format. Artificial Intelligence (AI) techniques can provide a problem driven data interpretation, for example by providing specific decision support. In future only a consequent application of this new technology will ensure that enterprises stay profitable in a globalized economy.

8.5 Concluding remarks

Nothing is static. Everything is evolving. The research community in product family design is no exception. The proposed method in this thesis is not an end in itself. It provides a stepping stone for the future research work in related fields of product family design. We hope that the proposed method provides a framework to integrate data-driven methods and new manufacturing technologies into product family design areas.
New problems and new demands in the product design arena will merge, new technologies will change the way we solve the problems. New paths can be explored and new methods can be developed which continue to advance the state-of-the-art in product design and customization.
Bibliography

developing modular architectures using genetic algorithms”. English. In: Research

particle swarm optimization”. In: Expert Systems with Applications 39.3 (2012),
pp. 3507–3515.

[37] A. Jose and M. Tollenaere. “Modular and platform methods for product family
design: literature analysis”. In: Journal of Intelligent Manufacturing 16.3 (2005),

integer programming model employing genetic algorithms”. In: IIE Transactions

duct family design”. In: Engineering Optimization 34.1 (2002), pp. 65–81.

[40] M. Martin and K. Ishii. “Design for variety: developing standardized and modu-
larized product platform architectures”. In: Research in Engineering Design 13.4

[41] H. J. Thevenot and T. W. Simpson. “A comprehensive metric for evaluating com-
ponent commonality in a product family”. In: Proceedings of IDETC/CIE’06.

[42] D. A. Collier. “The measurement and operating benefits of component part com-

design: a detailed comparison”. In: Journal of Engineering Design 17.2 (2006),

[104] L. Eeckhout and K. D. Bosschere. “How accurate should early design stage pow-

Appendix A

A.1 Acronyms

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>σ</td>
<td>Standard Deviation</td>
<td>86</td>
</tr>
<tr>
<td>ABS</td>
<td>Acrylonitrile Butadiene Styrene</td>
<td>29</td>
</tr>
<tr>
<td>AI</td>
<td>Artificial Intelligence</td>
<td>143</td>
</tr>
<tr>
<td>AM</td>
<td>Additive Manufacturing</td>
<td>136</td>
</tr>
<tr>
<td>ANN</td>
<td>Artificial Neural Network</td>
<td>20</td>
</tr>
<tr>
<td>AHP</td>
<td>Analytic Hierarchy Process</td>
<td>51</td>
</tr>
<tr>
<td>ARM</td>
<td>Association Rule Mining</td>
<td>19</td>
</tr>
<tr>
<td>ART</td>
<td>Adaptive Resonance Theory</td>
<td>21</td>
</tr>
<tr>
<td>CAD</td>
<td>Computer Aided Design</td>
<td>118</td>
</tr>
<tr>
<td>CDE</td>
<td>Correlation Dimension Estimator</td>
<td>78</td>
</tr>
<tr>
<td>CDI</td>
<td>Commonality versus Diversity Index</td>
<td>17</td>
</tr>
<tr>
<td>cDSP</td>
<td>Compromise Decision Support Problem</td>
<td>15</td>
</tr>
<tr>
<td>CN</td>
<td>Customer Need</td>
<td>142</td>
</tr>
<tr>
<td>CI</td>
<td>Commonality Index</td>
<td>17</td>
</tr>
<tr>
<td>CID</td>
<td>Engine Displacement</td>
<td>65</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
<td>Page</td>
</tr>
<tr>
<td>--------------</td>
<td>---</td>
<td>------</td>
</tr>
<tr>
<td>DCI</td>
<td>Degree of Commonality Index</td>
<td>17</td>
</tr>
<tr>
<td>DFAM</td>
<td>Design for Additive Manufacturing</td>
<td>142</td>
</tr>
<tr>
<td>DFM</td>
<td>Design for Manufacture</td>
<td>31</td>
</tr>
<tr>
<td>PhD</td>
<td>Doctor of Philosophy</td>
<td>1</td>
</tr>
<tr>
<td>DM</td>
<td>Data Mining</td>
<td>137</td>
</tr>
<tr>
<td>DSP</td>
<td>Decision Support Problem</td>
<td>138</td>
</tr>
<tr>
<td>DSS</td>
<td>Decision Support System</td>
<td>137</td>
</tr>
<tr>
<td>DSSDB Explorer</td>
<td>Decision Support System Database Explorer</td>
<td>139</td>
</tr>
<tr>
<td>ESRD</td>
<td>End Stage Renal Disease</td>
<td>116</td>
</tr>
<tr>
<td>EVE</td>
<td>Eigenvalue-based Estimator</td>
<td>78</td>
</tr>
<tr>
<td>FCM</td>
<td>Fuzzy C-Means</td>
<td>78</td>
</tr>
<tr>
<td>FDM</td>
<td>Fused Deposition Modeling</td>
<td>97</td>
</tr>
<tr>
<td>FEA</td>
<td>Finite Element Analysis</td>
<td>97</td>
</tr>
<tr>
<td>GA</td>
<td>Genetic Algorithm</td>
<td>14</td>
</tr>
<tr>
<td>GAda</td>
<td>Gentle AdaBoost</td>
<td>79</td>
</tr>
<tr>
<td>GMST</td>
<td>Geodesic Minimum Spanning Tree</td>
<td>78</td>
</tr>
<tr>
<td>GUI</td>
<td>Graphical User Interface</td>
<td>94</td>
</tr>
<tr>
<td>GVI</td>
<td>Generational Variety Index</td>
<td>17</td>
</tr>
<tr>
<td>Hp</td>
<td>Horse Power</td>
<td>63</td>
</tr>
<tr>
<td>LbFt</td>
<td>Torque</td>
<td>63</td>
</tr>
<tr>
<td>LLE</td>
<td>Local Linear Embedding</td>
<td>78</td>
</tr>
<tr>
<td>LT</td>
<td>Lower Torque Rpm</td>
<td>64</td>
</tr>
<tr>
<td>M</td>
<td>Median</td>
<td>85</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Term</td>
<td>Page</td>
</tr>
<tr>
<td>--------------</td>
<td>---</td>
<td>------</td>
</tr>
<tr>
<td>MDS</td>
<td>Multidimensional Scaling</td>
<td>78</td>
</tr>
<tr>
<td>MLE</td>
<td>Maximum Likelihood Estimator</td>
<td>78</td>
</tr>
<tr>
<td>NCI</td>
<td>Non-Commonality Index</td>
<td>17</td>
</tr>
<tr>
<td>NTU</td>
<td>Nanyang Technological University</td>
<td>1</td>
</tr>
<tr>
<td>NN</td>
<td>Nearest Neighbor</td>
<td>79</td>
</tr>
<tr>
<td>PBF</td>
<td>Powder Bed Fusion</td>
<td>124</td>
</tr>
<tr>
<td>PCA</td>
<td>Principle Component Analysis</td>
<td>78</td>
</tr>
<tr>
<td>PDI</td>
<td>Performance Deviation Index</td>
<td>17</td>
</tr>
<tr>
<td>PLA</td>
<td>Polylactic Acid</td>
<td>108</td>
</tr>
<tr>
<td>PPCEM</td>
<td>Product Platform Concept Exploration Method</td>
<td>14</td>
</tr>
<tr>
<td>PPCTM</td>
<td>Product Platform Constructal Theory Method</td>
<td>133</td>
</tr>
<tr>
<td>PSKO</td>
<td>Particle Swarm K-means Optimization</td>
<td>21</td>
</tr>
<tr>
<td>PSO</td>
<td>Particle Swarm Optimization</td>
<td>14</td>
</tr>
<tr>
<td>QFD</td>
<td>Quality Function Deployment</td>
<td>51</td>
</tr>
<tr>
<td>SIMTech</td>
<td>Singapore Institute of Manufacturing Technology</td>
<td>4</td>
</tr>
<tr>
<td>SL</td>
<td>Stereolithography</td>
<td>29</td>
</tr>
<tr>
<td>SLM</td>
<td>Selective Laser Melting</td>
<td>32</td>
</tr>
<tr>
<td>SLS</td>
<td>Selective Laser Sintering</td>
<td>139</td>
</tr>
<tr>
<td>SIMP</td>
<td>Solid Isotropic Material with Penalization</td>
<td>101</td>
</tr>
<tr>
<td>SOM</td>
<td>Self-Organizing Map</td>
<td>20</td>
</tr>
<tr>
<td>SQL</td>
<td>Structured Query Language</td>
<td>54</td>
</tr>
<tr>
<td>SUV</td>
<td>Sport Utility Vehicles</td>
<td>82</td>
</tr>
<tr>
<td>SVM</td>
<td>Support Vector Machine</td>
<td>79</td>
</tr>
</tbody>
</table>

170
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>u-cDSP</td>
<td>Utility-Based Compromise Decision Support Problem</td>
<td>138</td>
</tr>
<tr>
<td>UT</td>
<td>Upper Torque Rpm</td>
<td>64</td>
</tr>
<tr>
<td>UV</td>
<td>Ultraviolet</td>
<td>29</td>
</tr>
</tbody>
</table>
A.2 Matlab code

```matlab
%
Pump Optimization
%
This program takes the user specified flow rate and will generate the optimal pump parameters for minimum size, maximum efficiency and minimum cost or an equal weighting of the three, a text file is then generated containing the pump parameters to be utilized by the solidworks macro

Inputs: flow, pressure, volume weighting, efficiency weighting, ranges

clear
clc
tic

alpha = 1; %2x the wall thickness (mm)

beta = 1; %2x wall thickness+center width (mm)

gamma = 2; %Distance from tube to bottom of pump

OC = 0.589; %Oval Constant

pressure = 13332.2; %Pressure (Pa)

resist = 60; %amp

w_vol = 1/3; %Weighting for Volume

w_nu = 1/3; %Weighting for Efficiency

w_c = 1/3;

optimOptions = optimset('Algorithm','interior-point');

optimOptions.Display = 'Iter';

optimOptions.Display = 'off';

optimOptions.MaxIter = 500;

optimOptions.MaxFunEvals = 1e9;

optimOptions.TolFun = 1e-10;

optimOptions.TolX = 1e-10;

optimOptions.TolCon = 1e-6;

optimOptions.DiffMinChange = 1e-4;
```
% optimOptions. PlotFns = @optimplotfval;

x0 = [1.8478, 2.2547, 4.517, 0.06, 0.2187]; % TW, TH, volt, NoF, FW
x0 = [2.1021, 2.2345, 0.7264, 0.05, 0.3526]; % TW, TH, volt, NoF, FW
lb = [0.5, 0.5, 0.2, 0.5, 0.0];
ub = [2.5, 3.0, 12, 12, 1.0];
n = 1;
i = 1;

for flow = 100:50:600
 % Optimization for min Volume
 [x, f, exitflag, output] = fmincon(@PumpObjFunc, x0, [], [], [], [], lb, ub, ... @PumpCon, optimOptions, alpha, beta, gamma, OC, flow, pressure, resist, w_vol, w_m1, w_c);
 x(4) = round(x(4));
 x = floor(x * 1000) / 1000;

 syms V
 Voltage = solve(x(5)*OC*x(1)*x(2)*x(4)*(9.9083*V-6.5144)-flow);
 x(3) = double(Voltage);

 RPM = 9.9083*x(3)-6.5144;
 flowrate = x(5)*OC*x(1)*x(2)*x(4)*RPM;

 % Efficiency
 [nu, fluid_power, brake_power] = efficiency(flowrate, pressure, resist, x);
 nu;

 % Pump Volume
 [P_Vol, P_Depth, P_Width, P_Height] = PumpVol(x, alpha, beta, gamma, OC);
 P_Vol;

 % pump cost
\[P, O, M, L, N, T_B, T_z, T_xy, T_d] = \text{PumpCost}(x, \alpha, \beta, \gamma); \]

\% finger pump cost

\[C = \frac{P + O + M + L}{N}; \]

\% Utility

\[U_{nu} = -6.8238 \cdot n^2 + 5.8722 \cdot n - 0.2650; \]

\[U_{nu} = -1.4323 \cdot n^2 + 2.6802 \cdot n - 0.0381; \]

if \(U_{nu} \geq 1 \)

\[U_{nu} = 1; \]

end

if \(U_{nu} \leq 0 \)

\[U_{nu} = 0; \]

end

if \(n \geq 0.45 \)

\[U_{nu} = 1; \]

end

\[U_{Vol} = -1.419 \times 10^{-5} P_{Vol}^2 - 8.7807 \times 10^{-4} P_{Vol} + 1.0839 \]

if \(U_{Vol} \geq 1 \)

\[U_{Vol} = 1; \]

end

if \(U_{Vol} \leq 0 \)

\[U_{Vol} = 0; \]

end

if \(P_{Vol} \geq 250 \)

\[U_{Vol} = 0; \]

end

if \(P_{Vol} \leq 50 \)

\[U_{Vol} = 1; \]

end

\[U_C = -2.343 \times 10^{-6} C^2 - 3.589 \times 10^{-3} C + 1.056; \]
if $U_C \geq 1$
$U_C = 1$;
end
if $U_C \leq 0$
$U_C = 0$;
end
if $C \geq 150$
$U_C = 0$;
end
if $C \leq 20$
$U_C = 1$;
end
% % Pump Range
RPM_Range = [20, 112];
flow_range = x(5)*OC*x(1)*x(2)*x(4)*RPM_Range;
flow_range = round(flow_range);
% x(4) = round(x(4));
dim(i,:) = [flowrate, Z, nu, P_Vol, x(5), x(4), x(3), ...
... RPM, x(1), x(2), U, C, flow, P, O, M, L, N, T_B, T_Z, T_xy, T_d];
variables(i,:) = [flowrate, x];
i = i+1;
end
toc
Z_avg = mean(dim(:,2))
Effic_avg = mean(dim(:,3))
Vol_avg = mean(dim(:,4))
U_avg = mean(dim(:,11))
C_avg = mean(dim(:,12))

figure
plot(dim(:,13), dim(:,19), 'o')
title('Build_time')
xlabel('Flow_Rate')
ylabel('T_B')
grid on

figure
plot(dim(:,13), dim(:,18), 'o')
title('Number_of_parts_per_build')
xlabel('Flow_Rate')
ylabel('N')
grid on

figure
plot(dim(:,13), dim(:,12), 'o')
title('Cost_per_part')
xlabel('Flow_Rate')
ylabel('USD')
grid on

figure
plot(dim(:,13), dim(:,3), 'o')
title('Efficiency')
xlabel('Flow_Rate')
ylabel('%')
grid on
Listing A.1: The finger pump family optimization code.